Skip to main content Accessibility help

First variation of the general curvature-dependent surface energy

  • Günay Doğan (a1) and Ricardo H. Nochetto (a2)


We consider general surface energies, which are weighted integrals over a closed surface with a weight function depending on the position, the unit normal and the mean curvature of the surface. Energies of this form have applications in many areas, such as materials science, biology and image processing. Often one is interested in finding a surface that minimizes such an energy, which entails finding its first variation with respect to perturbations of the surface. We present a concise derivation of the first variation of the general surface energy using tools from shape differential calculus. We first derive a scalar strong form and next a vector weak form of the first variation. The latter reveals the variational structure of the first variation, avoids dealing explicitly with the tangential gradient of the unit normal, and thus can be easily discretized using parametric finite elements. Our results are valid for surfaces in any number of dimensions and unify all previous results derived for specific examples of such surface energies.



Hide All
[1] Almgren, F. and Taylor, J.E., Optimal geometry in equilibrium and growth. Fractals 3 (1995) 713723. Symposium in Honor of B. Mandelbrot.
[2] Almgren, F., Taylor, J.E. and Wang, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim. 31 (1993) 387438.
[3] Ambrosio, L., Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191246.
[4] L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005).
[5] Barrett, J.W., Garcke, H. and Nürnberg, R., Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput. 31 (2008) 225253.
[6] Bauer, M. and Kuwert, E., Existence of minimizing Willmore surfaces of prescribed genus. Int. Math. Res. Not. 10 (2003) 553576.
[7] Baumgart, T., Hess, S.T. and Webb, W.W., Image coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821824.
[8] Bellettini, G. and Paolini, M., Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25 (1996) 537566.
[9] Bonito, A., Nochetto, R.H. and Pauletti, M.S., Parametric FEM for geometric biomembranes. J. Comput. Phys. 229 (2010) 31713188.
[10] Cahn, J.W. and Hoffman, D.W., A vector thermodynamics for anisotropic surfaces. II. Curved and facetted surfaces. Acta Metall. 22 (1974) 12051214.
[11] T. Chan and L. Vese, A level set algorithm for minimizing the Mumford-Shah functional in image processing, in Proceedings of the 1st IEEE Workshop on Variational and Level Set Methods in Computer Vision (2001) 161–168.
[12] Chen, K., Jayaprakash, C., Pandit, R. and Wenzel, W., Microemulsions: A Landau-Ginzburg theory. Phys. Rev. Lett. 65 (1990) 27362739.
[13] Cicuta, P., Keller, S.L. and Veatch, S.L., Diffusion of liquid domains in lipid bilayer membranes. J. Phys. Chem. B 111 (2007) 33283331.
[14] Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M. and Rusu, R., A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Des. 21 (2004) 427445.
[15] M.C. Delfour and J.-P. Zolésio, Shapes and Geometries, Advances in Design and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001).
[16] Döbereiner, H.G., Selchow, O. and Lipowsky, R., Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. Eur. Biophys. J. 28 (1999) 174178.
[17] Doğan, G., Morin, P. and Nochetto, R.H., A variational shape optimization approach for image segmentation with a Mumford-Shah functional. SIAM J. Sci. Comput. 30 (2008) 30283049.
[18] Doğan, G., Morin, P., Nochetto, R.H. and Verani, M., Discrete gradient flows for shape optimization and applications. Comput. Meth. Appl. Mech. Eng. 196 (2007) 38983914.
[19] Droske, M. and Bertozzi, M., Higher-order feature-preserving geometric regularization. SIAM J. Imaging Sci. 3 (2010) 2151.
[20] Dziuk, G., Computational parametric Willmore flow. Numer. Math. 111 (2008) 5580.
[21] G. Dziuk, E. Kuwert and R. Schätzle, Evolution of elastic curves in $\mathbb{R}^n$: existence and computation. SIAM J. Math. Anal. 33 (electronic) (2002) 1228–1245.
[22] Elliott, C.M. and Stinner, B., Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 65856612.
[23] Helfrich, W., Elastic properties of lipid bilayers – theory and possible experiments. Zeitschrift Fur Naturforschung C-A J. Biosc. 28 (1973) 693.
[24] M. Hintermüller and W. Ring, A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64 (2003/04) 442–467.
[25] Hintermüller, M. and Ring, W., An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional. J. Math. Imaging and Vision 20 (2004) 1942. Special issue on mathematics and image analysis.
[26] Jenkins, J.T., The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math. 32 (1977) 755764.
[27] R. Keriven and O. Faugeras, Variational principles, surface evolution, PDEs, level set methods and the stereo problem. Technical Report 3021, INRIA (1996).
[28] Keriven, R. and Faugeras, O., Variational principles, surface evolution, PDEs, level set methods and the stereo problem. IEEE Trans. Image Process. 7 (1998) 336344.
[29] Kimmel, R. and Bruckstein, A.M., Regularized Laplacian zero crossings as optimal edge integrators. IJCV 53 (2003) 225243.
[30] Kuwert, E. and Schätzle, R., The Willmore flow with small initial energy. J. Differential Geom. 57 (2001) 409441.
[31] Kuwert, E. and Schätzle, R., Gradient flow for the Willmore functional. Comm. Anal. Geom. 10 (2002) 307339.
[32] Kuwert, E. and Schätzle, R., Removability of point singularities of Willmore surfaces. Ann. Math. 160 (2004) 315357.
[33] Laradji, M. and Mouritsen, O.G., Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study. J. Chem. Phys. 112 (2000) 86218630.
[34] M. Leventon, O. Faugeraus and W. Grimson, Level set based segmentation with intensity and curvature priors, in Proceedings of Workshop on Mathematical Methods in Biomedical Image Analysis Proceedings (2000) 4–11.
[35] McFadden, G.B., Wheeler, A.A., Braun, R.J., Coriell, S.R. and Sekerka, R.F., Phase-field models for anisotropic interfaces. Phys. Rev. E 48 (1993) 20162024.
[36] Melenkevitz, J. and Javadpour, S.H., Phase separation dynamics in mixtures containing surfactants. J. Chem. Phys. 107 (1997) 623629.
[37] Rusu, R., An algorithm for the elastic flow of surfaces. Interfaces and Free Boundaries 7 (2005) 229239.
[38] Seifert, U., Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13137.
[39] Simon, L., Existence of surfaces minimizing the Willmore functional. Comm. Anal. Geom. 1 (1993) 281326.
[40] Simonett, G., The Willmore flow near spheres. Differential Integral Equations 14 (2001) 10051014.
[41] J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer Series in Computational Mathematics 16. Springer-Verlag, Berlin (1992).
[42] G. Sundaramoorthi, A. Yezzi, A. Mennucci and G. Sapiro, New possibilities with Sobolev active contours, in Proceedings of the 1st International Conference on Scale Space Methods and Variational Methods in Computer Vision (2007).
[43] Taylor, J.E., Crystalline variational problems. Bull. Amer. Math. Soc. 84 (1978) 568588.
[44] Taylor, J.E., Mean curvature and weighted mean curvature. Acta Metall. Mater. 40 (1992) 14751485.
[45] Taylor, J.E. and Cahn, J.W., Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77 (1994) 183197.
[46] Taylor, J.E. and Cahn, J.W., Diffuse interfaces with sharp corners and facets: Phase field modeling of strongly anisotropic surfaces. Physica D 112 (1998) 381411.
[47] Veatch, S.L. and Keller, S.L., Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85 (2003) 30743083.
[48] Wheeler, A.A. and McFadden, G.B., A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics. Eur. J. Appl. Math. 7 (1996) 367381.
[49] T.J. Willmore, Total curvature in Riemannian geometry. Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester (1982).


Related content

Powered by UNSILO

First variation of the general curvature-dependent surface energy

  • Günay Doğan (a1) and Ricardo H. Nochetto (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.