[1]
Almgren, F. and Taylor, J.E., Optimal geometry in equilibrium and growth. *Fractals* 3 (1995) 713–723. Symposium in Honor of B. Mandelbrot.

[2]
Almgren, F., Taylor, J.E. and Wang, L., Curvature-driven flows: a variational approach. *SIAM J. Control Optim.* 31 (1993) 387–438.

[3]
Ambrosio, L., Minimizing movements. *Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.* 19 (1995) 191–246.

[4]
L. Ambrosio, N. Gigli and G. Savaré, *Gradient Flows in Metric Spaces and in the Space of Probability Measures*. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (2005).

[5]
Barrett, J.W., Garcke, H. and Nürnberg, R., Parametric approximation of Willmore flow and related geometric evolution equations. *SIAM J. Sci. Comput.* 31 (2008) 225–253.

[6]
Bauer, M. and Kuwert, E., Existence of minimizing Willmore surfaces of prescribed genus. *Int. Math. Res. Not.* 10 (2003) 553–576.

[7]
Baumgart, T., Hess, S.T. and Webb, W.W., Image coexisting fluid domains in biomembrane models coupling curvature and line tension. *Nature* 425 (2003) 821–824.

[8]
Bellettini, G. and Paolini, M., Anisotropic motion by mean curvature in the context of Finsler geometry. *Hokkaido Math. J.* 25 (1996) 537–566.

[9]
Bonito, A., Nochetto, R.H. and Pauletti, M.S., Parametric FEM for geometric biomembranes. *J. Comput. Phys.* 229 (2010) 3171–3188.

[10]
Cahn, J.W. and Hoffman, D.W., A vector thermodynamics for anisotropic surfaces. II. Curved and facetted surfaces. *Acta Metall.* 22 (1974) 1205–1214.

[11]
T. Chan and L. Vese, A level set algorithm for minimizing the Mumford-Shah functional in image processing, in *Proceedings of the 1st IEEE Workshop on Variational and Level Set Methods in Computer Vision* (2001) 161–168.

[12]
Chen, K., Jayaprakash, C., Pandit, R. and Wenzel, W., Microemulsions: A Landau-Ginzburg theory. *Phys. Rev. Lett.* 65 (1990) 2736–2739.

[13]
Cicuta, P., Keller, S.L. and Veatch, S.L., Diffusion of liquid domains in lipid bilayer membranes. *J. Phys. Chem. B* 111 (2007) 3328–3331.

[14]
Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M. and Rusu, R., A finite element method for surface restoration with smooth boundary conditions. *Comput. Aided Geom. Des.* 21 (2004) 427–445.

[15]
M.C. Delfour and J.-P. Zolésio, *Shapes and Geometries*, *Advances in Design and Control.* Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2001).

[16]
Döbereiner, H.G., Selchow, O. and Lipowsky, R., Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry. *Eur. Biophys. J.* 28 (1999) 174–178.

[17]
Doğan, G., Morin, P. and Nochetto, R.H., A variational shape optimization approach for image segmentation with a Mumford-Shah functional. *SIAM J. Sci. Comput.* 30 (2008) 3028–3049.

[18]
Doğan, G., Morin, P., Nochetto, R.H. and Verani, M., Discrete gradient flows for shape optimization and applications. *Comput. Meth. Appl. Mech. Eng.* 196 (2007) 3898–3914.

[19]
Droske, M. and Bertozzi, M., Higher-order feature-preserving geometric regularization. *SIAM J. Imaging Sci.* 3 (2010) 21–51.

[20]
Dziuk, G., Computational parametric Willmore flow. *Numer. Math.* 111 (2008) 55–80.

[21]
G. Dziuk, E. Kuwert and R. Schätzle, Evolution of elastic curves in $\mathbb{R}^n$: existence and computation. *SIAM J. Math. Anal.* **33** (electronic) (2002) 1228–1245.
[22]
Elliott, C.M. and Stinner, B., Modeling and computation of two phase geometric biomembranes using surface finite elements. *J. Comput. Phys.* 229 (2010) 6585–6612.

[23]
Helfrich, W., Elastic properties of lipid bilayers – theory and possible experiments. *Zeitschrift Fur Naturforschung C-A J. Biosc.* 28 (1973) 693.

[24]
M. Hintermüller and W. Ring, A second order shape optimization approach for image segmentation. *SIAM J. Appl. Math.* **64** (2003/04) 442–467.

[25]
Hintermüller, M. and Ring, W., An inexact Newton-CG-type active contour approach for the minimization of the Mumford-Shah functional. *J. Math. Imaging and Vision* 20 (2004) 19–42. Special issue on mathematics and image analysis.

[26]
Jenkins, J.T., The equations of mechanical equilibrium of a model membrane. *SIAM J. Appl. Math.* 32 (1977) 755–764.

[27]
R. Keriven and O. Faugeras, *Variational principles, surface evolution, PDEs, level set methods and the stereo problem.* Technical Report 3021, INRIA (1996).

[28]
Keriven, R. and Faugeras, O., Variational principles, surface evolution, PDEs, level set methods and the stereo problem. *IEEE Trans. Image Process.* 7 (1998) 336–344.

[29]
Kimmel, R. and Bruckstein, A.M., Regularized Laplacian zero crossings as optimal edge integrators. *IJCV* 53 (2003) 225–243.

[30]
Kuwert, E. and Schätzle, R., The Willmore flow with small initial energy. *J. Differential Geom.* 57 (2001) 409–441.

[31]
Kuwert, E. and Schätzle, R., Gradient flow for the Willmore functional. *Comm. Anal. Geom.* 10 (2002) 307–339.

[32]
Kuwert, E. and Schätzle, R., Removability of point singularities of Willmore surfaces. *Ann. Math.* 160 (2004) 315–357.

[33]
Laradji, M. and Mouritsen, O.G., Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study. *J. Chem. Phys.* 112 (2000) 8621–8630.

[34]
M. Leventon, O. Faugeraus and W. Grimson, Level set based segmentation with intensity and curvature priors, in *Proceedings of Workshop on Mathematical Methods in Biomedical Image Analysis Proceedings* (2000) 4–11.

[35]
McFadden, G.B., Wheeler, A.A., Braun, R.J., Coriell, S.R. and Sekerka, R.F., Phase-field models for anisotropic interfaces. *Phys. Rev. E* 48 (1993) 2016–2024.

[36]
Melenkevitz, J. and Javadpour, S.H., Phase separation dynamics in mixtures containing surfactants. *J. Chem. Phys.* 107 (1997) 623–629.

[37]
Rusu, R., An algorithm for the elastic flow of surfaces. *Interfaces and Free Boundaries* 7 (2005) 229–239.

[38]
Seifert, U., Configurations of fluid membranes and vesicles. *Adv. Phys.* 46 (1997) 13–137.

[39]
Simon, L., Existence of surfaces minimizing the Willmore functional. *Comm. Anal. Geom.* 1 (1993) 281–326.

[40]
Simonett, G., The Willmore flow near spheres. *Differential Integral Equations* 14 (2001) 1005–1014.

[41]
J. Sokołowski and J.-P. Zolésio, *Introduction to Shape Optimization*, *Springer Series in Computational Mathematics* **16**. Springer-Verlag, Berlin (1992).

[42]
G. Sundaramoorthi, A. Yezzi, A. Mennucci and G. Sapiro, New possibilities with Sobolev active contours, in *Proceedings of the 1st International Conference on Scale Space Methods and Variational Methods in Computer Vision* (2007).

[43]
Taylor, J.E., Crystalline variational problems. *Bull. Amer. Math. Soc.* 84 (1978) 568–588.

[44]
Taylor, J.E., Mean curvature and weighted mean curvature. *Acta Metall. Mater.* 40 (1992) 1475–1485.

[45]
Taylor, J.E. and Cahn, J.W., Linking anisotropic sharp and diffuse surface motion laws via gradient flows. *J. Stat. Phys.* 77 (1994) 183–197.

[46]
Taylor, J.E. and Cahn, J.W., Diffuse interfaces with sharp corners and facets: Phase field modeling of strongly anisotropic surfaces. *Physica D* 112 (1998) 381–411.

[47]
Veatch, S.L. and Keller, S.L., Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. *Biophys. J.* 85 (2003) 3074–3083.

[48]
Wheeler, A.A. and McFadden, G.B., A *ξ*-vector formulation of anisotropic phase-field models: 3D asymptotics. *Eur. J. Appl. Math.* 7 (1996) 367–381.

[49]
T.J. Willmore, *Total curvature in Riemannian geometry*. Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester (1982).