Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T18:40:33.073Z Has data issue: false hasContentIssue false

Compressible two-phase flows by central and upwind schemes

Published online by Cambridge University Press:  15 June 2004

Smadar Karni
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, and Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel. karni@math.lsa.umich.edu.
Eduard Kirr
Affiliation:
Department of Mathematics, University of Chicago, Chicago, IL 60637, USA. ekirr@math.uchicago.edu.
Alexander Kurganov
Affiliation:
Department of Mathematics, Tulane University, New Orleans, LA 70118, USA. kurganov@math.tulane.edu.
Guergana Petrova
Affiliation:
Department of Mathematics, Texas A&M University, College Station, TX 77843, USA. gpetrova@math.tamu.edu.
Get access

Abstract

This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abgrall, R. and Karni, S., Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594623. CrossRef
Abgrall, R. and Saurel, R., Discrete equations for physical and numerical compressible multiphase flow mixtures. J. Comput. Phys. 186 (2003) 361396. CrossRef
Coquel, F., El Amine, K., Godlewski, E., Perthame, B. and Rascle, P., A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272288. CrossRef
Drew, D.A., Mathematical modelling of tow-phase flow. Ann. Rev. Fluid Mech. 15 (1983) 261291. CrossRef
Einfeldt, B., Munz, C.-D., Roe, P.L. and Sjogreen, B., Godunov-type, On methods near low densities. J. Comput. Phys. 92 (1991) 273295. CrossRef
Harten, A. and Osher, S., Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24 (1987) 279309. CrossRef
Karni, S., Multi-component flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112 (1994) 3143. CrossRef
Kurganov, A. and Levy, D., Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397425. CrossRef
Kurganov, A., Noelle, S. and Petrova, G., Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707740. CrossRef
Kurganov, A. and Petrova, G., Central schemes and contact discontinuities. ESAIM: M2AN 34 (2000) 12591275. CrossRef
van Leer, B., Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101136. CrossRef
Nessyahu, H. and Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408463. CrossRef
V.H. Ransom, Numerical benchmark tests, G.F. Hewitt, J.M. Delhay and N. Zuber Eds., Hemisphere, Washington, DC Multiphase Science and Technology 3 (1987).
P.-A. Raviart and L. Sainsaulieu, Nonconservative hyperbolic systems and two-phase flows, International Conference on Differential Equations (Barcelona, 1991) World Sci. Publishing, River Edge, NJ 1, 2 (1993) 225–233.
Raviart, P.-A. and Sainsaulieu, L., A nonconservative hyperbolic system modeling spray dynamics. I. Solution of the Riemann problem. Math. Models Methods Appl. Sci. 5 (1995) 297333. CrossRef
Roe, P.L., Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43 (1981) 357372. CrossRef
P.L. Roe, Fluctuations and signals - A framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (1982) 219–257.
P.L. Roe and J. Pike, Efficient construction and utilisation of approximate Riemann solutions, in Computing methods in applied sciences and engineering, VI (Versailles, 1983) North-Holland, Amsterdam (1984) 499–518.
Sainsaulieu, L., Finite volume approximations of two-phase fluid flows based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 128. CrossRef
Saurel, R. and Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425467. CrossRef
Stewart, H.B. and Wendroff, B., Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363409. CrossRef
Toumi, I. and Kumbaro, A., An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286300. CrossRef