Skip to main content Accessibility help
×
Home

An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model

  • Laura Gastaldo (a1), Raphaèle Herbin (a2) and Jean-Claude Latché (a1)

Abstract

We present in this paper a pressure correction scheme for the drift-flux model combining finite element and finite volume discretizations, which is shown to enjoy essential stability features of the continuous problem: the scheme is conservative, the unknowns are kept within their physical bounds and, in the homogeneous case (i.e. when the drift velocity vanishes), the discrete entropy of the system decreases; in addition, when using for the drift velocity a closure law which takes the form of a Darcy-like relation, the drift term becomes dissipative. Finally, the present algorithm preserves a constant pressure and a constant velocity through moving interfaces between phases. To ensure the stability as well as to obtain this latter property, a key ingredient is to couple the mass balance and the transport equation for the dispersed phase in an original pressure correction step. The existence of a solution to each step of the algorithm is proven; in particular, the existence of a solution to the pressure correction step is derived as a consequence of a more general existence result for discrete problems associated to the drift-flux model. Numerical tests show a near-first-order convergence rate for the scheme, both in time and space, and confirm its stability.

Copyright

References

Hide All
[1] G. Ansanay-Alex, F. Babik, J.-C. Latché and D. Vola, An L 2–stable approximation of the Navier–Stokes advection operator for low-order non-conforming finite elements. IJNMF (to appear).
[2] Baudin, M., Berthon, Ch., Coquel, F., Masson, R. and Tran, Q.H., A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411440.
[3] Baudin, M., Coquel, F. and Tran, Q.-H., A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914936 (electronic).
[4] Becker, S., Sokolichin, A. and Eigenberger, G., Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations. Chem. Eng. Sci. 49 (1994) 57475762.
[5] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991).
[6] G. Chanteperdrix, Modélisation et simulation numérique d'écoulements diphasiques à interface libre. Application à l'étude des mouvements de liquides dans les réservoirs de véhicules spatiaux. Energétique et dynamique des fluides, École Nationale Supérieure de l'Aéronautique et de l'Espace, France (2004).
[7] P.G. Ciarlet, Finite elements methods – Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, P. Ciarlet and J.L. Lions Eds., North Holland (1991) 17–351.
[8] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue Française d'Automatique, Informatique et Recherche Opérationnelle (R.A.I.R.O.) 3 (1973) 33–75.
[9] K. Deimling, Nonlinear Functional Analysis. Springer, New York, USA (1980).
[10] Evje, S. and Fjelde, K.K., Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674701.
[11] Evje, S. and Fjelde, K.K., On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 14971530.
[12] Eymard, R., Gallouët, T., Ghilani, M. and Herbin, R., Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563594.
[13] R. Eymard, T Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis I, P. Ciarlet and J.L. Lions Eds., North Holland (2000) 713–1020.
[14] Flåtten, T. and Munkejord, S.T., The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: M2AN 40 (2006) 735764.
[15] Gallouet, T., Hérard, J.-M. and Seguin, N., A hybrid scheme to compute contact discontinuities in one dimensional Euler systems. ESAIM: M2AN 36 (2003) 11331159.
[16] Gallouët, T., Gastaldo, L., Herbin, R. and Latché, J.-C., An unconditionally stable pressure correction scheme for compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303331.
[17] Gallouët, T., Herbin, R. and Latché, J.-C., A convergent finite-element volume scheme for the compressible Stokes problem. Part I: The isothermal case. Math. Comp. 78 (2009) 13331352.
[18] L. Gastaldo, R. Herbin and J.-C. Latché, A pressure correction scheme for the homogeneous two-phase flow model with two barotropic phases, in Finite Volumes for Complex Applications V – Problems and Perspectives – Aussois, France (2008) 447–454.
[19] L. Gastaldo, R. Herbin and J.-C. Latché, A discretization of the phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. (2009) doi:10.1093/imanum/drp006.
[20] Guermond, J.-L. and Quartapelle, L., A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167188.
[21] Guermond, J.L., Minev, P. and Shen, J., An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Eng. 195 (2006) 60116045.
[22] Guillard, H. and Duval, F., Darcy la, Aw for the drift velocity in a two-phase flow model. J. Comput. Phys. 224 (2007) 288313.
[23] Harlow, F.H. and Amsden, A.A., A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8 (1971) 197213.
[24] D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly flows, in 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22–24 September (2004).
[25] Larrouturou, B., How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95 (1991) 5984.
[26] M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in Handbook of Numerical Analysis VI, P. Ciarlet and J.L. Lions Eds., North Holland (1998).
[27] Masella, J.-M., Faille, I. and Gallouët, T., On an approximate Godunov scheme. Int. J. Comput. Fluid Dyn. 12 (1999) 133149.
[28] Moukalled, F., Darwish, M. and Sekar, B., A pressure-based algorithm for multi-phase flow at all speeds. J. Comput. Phys. 190 (2003) 550571.
[29] Rannacher, R. and Turek, S., Simple nonconforming quadrilateral Stokes element. Numer. Methods Part. Differ. Equ. 8 (1992) 97111.
[30] Romate, J.E., An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455477.
[31] Sokolichin, A. and Eigenberger, G., Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations. Chem. Eng. Sci. 54 (1999) 22732284.
[32] Sokolichin, A., Eigenberger, G. and Lapin, A., Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AIChE J. 50 (2004) 2445.
[33] B. Spalding, Numerical computation of multi-phase fluid flow and heat transfer, in Recent Advances in Numerical Methods in Fluids 1, Swansea, Pineridge Press (1980) 139–168.
[34] P. Wesseling, Principles of computational fluid dynamics, Springer Series in Computational Mathematics 29. Springer (2001).

Keywords

Related content

Powered by UNSILO

An unconditionally stable finite element-finite volume pressure correction scheme for the drift-flux model

  • Laura Gastaldo (a1), Raphaèle Herbin (a2) and Jean-Claude Latché (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.