Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T01:36:12.178Z Has data issue: false hasContentIssue false

An hp-Discontinuous Galerkin Method for the Optimal Control Problem of Laser Surface Hardening of Steel

Published online by Cambridge University Press:  28 June 2011

Gupta Nupur
Affiliation:
Department of Mathematics, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India. nupur@math.iitb.ac.in; neela@math.iitb.ac.in
Nataraj Neela
Affiliation:
Department of Mathematics, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India. nupur@math.iitb.ac.in; neela@math.iitb.ac.in
Get access

Abstract

In this paper, we discuss an hp-discontinuous Galerkin finite element method (hp-DGFEM) for the laser surface hardening of steel, which is a constrained optimal control problem governed by a system of differential equations, consisting of an ordinary differential equation for austenite formation and a semi-linear parabolic differential equation for temperature evolution. The space discretization of the state variable is done using an hp-DGFEM, time and control discretizations are based on a discontinuous Galerkin method. A priori error estimates are developed at different discretization levels. Numerical experiments presented justify the theoretical order of convergence obtained.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnăutu, V., Hömberg, D. and Sokołowski, J., Convergence results for a nonlinear parabolic control problem. Numer. Funct. Anal. Optim. 20 (1999) 805824. CrossRef
Arnold, D.N., An interior penalty method for discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742760. CrossRef
Arnold, D.N., Brezzi, F., Cockburn, B. and Marini, L.D., Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 17491779. CrossRef
Babuška, I., The finite element method with penalty. Math. Comput. 27 (1973) 221228. CrossRef
C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world. Preprint of the Laboratoire Jacques-Louis Lions R03038 (2003).
P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978).
M. Crouzeix, V. Thomee, L.B. Wahlbin, Error estimates for spatial discrete approximation of semilinear parabolic equation with initial data of low regularity. Math. Comput. 53 187 (1989) 25–41.
J. Douglas, Jr. and T. Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing Methods in Applied Sciences, Lecture Notes in Phys. 58. Springer-Verlag, Berlin (1976).
Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28 (1991) 4377. CrossRef
Eriksson, K. and Johnson, C., Adaptive finite element methods for parabolic problems II: optimal error estimates in $L_{\infty}L_2$ and $L_{\infty}L_{\infty}$. SIAM J. Numer. Anal. 32 (1995) 706740. CrossRef
L.C. Evans, Partial Differential Equations. American Mathematics Society, Providence, Rhode Island (1998).
Gudi, T., Nataraj, N. and Pani, A.K., Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type. SIAM J. Numer. Anal. 45 (2007) 163192. CrossRef
Gudi, T., Nataraj, N. and Pani, A.K., hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems. Numer. Math. 109 (2008) 233268. CrossRef
Gudi, T., Nataraj, N. and Pani, A.K., An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type. Math. Comput. 77 (2008) 731756. CrossRef
N. Gupta, N. Nataraj and A.K. Pani, An optimal control problem of laser surface hardening of steel. Int. J. Numer. Anal. Model. 7 (2010).
N. Gupta, N. Nataraj and A.K. Pani, A priori error estimates for the optimal control of laser surface hardening of steel. Paper communicated.
Hömberg, D., A mathematical model for the phase transitions in eutectoid carbon steel. IMA J. Appl. Math. 54 (1995) 3157. CrossRef
Hömberg, D., Irreversible phase transitions in steel. Math. Methods Appl. Sci. 20 (1997) 5977. 3.0.CO;2-Z>CrossRef
Hömberg, D. and Fuhrmann, J., Numerical simulation of surface hardening of steel. Int. J. Numer. Meth. Heat Fluid Flow 9 (1999) 705724.
Hömberg, D. and Sokolowski, J., Optimal control of laser hardening. Adv. Math. Sci. 8 (1998) 911928.
Hömberg, D. and Volkwein, S., Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition. Math. Comput. Model. 37 (2003) 10031028. CrossRef
Hömberg, D. and Weiss, W., PID-control of laser surface hardening of steel. IEEE Trans. Control Syst. Technol. 14 (2006) 896904. CrossRef
Houston, P., Schwab, C. and Süli, E., Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 21332163. CrossRef
A. Lasis and E. Süli, hp -version discontinuous Galerkin finite element methods for semilinear parabolic problems. Report No. 03/11, Oxford university computing laboratory (2003).
A. Lasis and E. Süli, Poincaré-type inequalities for broken Sobolev spaces. Isaac Newton Institute for Mathematical Sciences, Preprint No. NI03067-CPD (2003).
Leblond, J.B. and Devaux, J., A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall. 32 (1984) 137146. CrossRef
Mazhukin, V.I. and Samarskii, A.A., Mathematical modelling in the technology of laser treatments of materials. Surveys Math. Indust. 4 (1994) 85-149.
Meidner, D., and Vexler, B., A priori error estimates for space-time finite element discretization of parabolic optimal control problems part I: problems without control constraints. SIAM J. Control Optim. 47 (2007) 11501177. CrossRef
J.A. Nitsche, Über ein Variationprinzip zur Lösung Dirichlet-Problemen bei Verwen-dung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9–15. CrossRef
Oden, J.T., Babuška, I. and Baumann, C.E., A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146 (1998) 491519. CrossRef
S. Prudhomme, F. Pascal and J.T. Oden, Review of error estimation for discontinuous Galerkin method. TICAM-report 00-27 (2000).
B. Rivière, Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation. Frontiers in Mathematics 35. SIAM 2008. ISBN: 978-0-898716-56-6.
B. Rivière and M.F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations. The Center for Substance Modeling, TICAM, The University of Texas, Austin TX 78712, USA.
Rivière, B., Wheeler, M.F. and Girault, V., A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902931. CrossRef
V. Thomée, Galerkin finite element methods for parabolic problems. Springer (1997).
S. Volkwein, Non-linear conjugate gradient method for the optimal control of laser surface hardening, Optim. Methods Softw. 19 (2004) 179–199. CrossRef
Wheeler, M.F., An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152161. CrossRef