Skip to main content Accessibility help
×
Home

Weak notions of Jacobian determinant and relaxation

  • Guido De Philippis (a1)

Abstract

In this paper we study two weak notions of Jacobian determinant for Sobolev maps, namely the distributional Jacobian and the relaxed total variation, which in general could be different. We show some cases of equality and use them to give an explicit expression for the relaxation of some polyconvex functionals.

Copyright

References

Hide All
[1] Alberti, G., Baldo, S. and Orlandi, G., Functions with prescribed singularities. J. Eur. Math. Soc. (JEMS) 5 (2003) 275311.
[2] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000).
[3] Ball, J.M., Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1976) 337403.
[4] Bethuel, F., A characterization of maps in H 1(B 3, S 2) which can be approximated by smooth maps. Ann. Inst. Henri Poincaré Anal. Non Linéaire 7 (1990) 269286.
[5] Bethuel, F., The approximation problem for Sobolev maps between two manifolds. Acta Math. 167 (1991) 153206.
[6] Bouchitté, G., Fonseca, I. and Malý, J., The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. R. Soc. Edinb. Sect. A 128 (1998) 463479.
[7] Brezis, H. and Nirenberg, L., Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Mathematica (N.S.) 1 (1995) 197263.
[8] Brezis, H. and Nirenberg, L., Degree theory and BMO. II. Compact manifolds with boundaries. Selecta Mathematica (N.S.) 2 (1996) 309368.
[9] Brezis, H., Coron, J.-M. and Lieb, E.H., Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649705.
[10] Coifman, R., Lions, P.-L., Meyer, Y. and Semmes, S., Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9) 72 (1993) 247286.
[11] Conti, S. and De Lellis, C., Some remarks on the theory of elasticity for compressible Neohookean materials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2 (2003) 521549.
[12] B. Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences 78. Springer, New York, second edition (2008).
[13] Dacorogna, B. and Marcellini, P., Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 393396.
[14] De Lellis, C., Some fine properties of currents and applications to distributional Jacobians. Proc. R. Soc. Edinb. Sect. A 132 (2002) 815842.
[15] De Lellis, C., Some remarks on the distributional Jacobian. Nonlinear Anal. 53 (2003) 11011114.
[16] De Lellis, C. and Ghiraldin, F., An extension of Müller’s identity Det = det. C. R. Math. Acad. Sci. Paris 348 (2010) 973976.
[17] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992).
[18] H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York (1969).
[19] I. Fonseca and W. Gangbo, Degree theory in analysis and applications, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York (1995).
[20] Fonseca, I. and Malý, J., Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309338.
[21] Fonseca, I. and Marcellini, P., Relaxation of multiple integrals in subcritical Sobolev spaces. J. Geom. Anal. 7 (1997) 5781.
[22] Fonseca, I., Fusco, N. and Marcellini, P., On the total variation of the Jacobian. J. Funct. Anal. 207 (2004) 132.
[23] Fonseca, I., Fusco, N. and Marcellini, P., Topological degree, Jacobian determinants and relaxation. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 8 (2005) 187250.
[24] Giaquinta, M., Modica, G. and Souček, J., Graphs of finite mass which cannot be approximated in area by smooth graphs. Manuscr. Math. 78 (1993) 259271.
[25] Giaquinta, M., Modica, G. and Souček, J., Remarks on the degree theory. J. Funct. Anal. 125 (1994) 172200.
[26] M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations I, Cartesian currents. Springer-Verlag, Berlin (1998).
[27] A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge (2002).
[28] Jerrard, R.L. and Soner, H.M., Functions of bounded higher variation. Indiana Univ. Math. J. 51 (2002) 645677.
[29] Malý, J., L p-approximation of Jacobians. Comment. Math. Univ. Carolin. 32 (1991) 659666.
[30] Marcellini, P., Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math. 51 (1985) 128.
[31] Marcellini, P., On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré Anal. Non Linéaire 3 (1986) 391409.
[32] P. Marcellini, The stored-energy for some discontinuous deformations in nonlinear elasticity, in Partial differential equations and the calculus of variations II, Progr. Nonlinear Differential Equations Appl. 2, Birkhäuser Boston, Boston, MA (1989) 767–786.
[33] Mucci, D., Remarks on the total variation of the Jacobian. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 223233.
[34] D. Mucci, A variational problem involving the distributional determinant. Riv. Mat. Univ. Parma (to appear).
[35] Müller, S., Higher integrability of determinants and weak convergence in L 1. J. Reine Angew. Math. 412 (1990) 2034.
[36] Müller, S., Det = det. A remark on the distributional determinant. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 1317.
[37] Müller, S., On the singular support of the distributional determinant. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993) 657696.
[38] Müller, S. and Spector, S.J., An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131 (1995) 166.
[39] Müller, S., Tang, Q. and Yan, B.S., On a new class of elastic deformations not allowing for cavitation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 11 (1994) 217243.
[40] Müller, S., Spector, S.J. and Tang, Q., Invertibility and a topological property of Sobolev maps. SIAM J. Math. Anal. 27 (1996) 959976.
[41] Paolini, E., On the relaxed total variation of singular maps. Manuscr. Math. 111 (2003) 499512.
[42] Ponce, A.C. and Van Schaftingen, J., Closure of smooth maps in W 1, p(B 3;S 2). Differential Integral Equations 22 (2009) 881900.
[43] Schmidt, T., Regularity of Relaxed Minimizers of Quasiconvex Variational Integrals with (p, q)-growth. Arch. Rational Mech. Anal. 193 (2009) 311337.
[44] White, B., Existence of least-area mappings of N-dimensional domains. Ann. Math. (2) 118 (1983) 179185.

Keywords

Related content

Powered by UNSILO

Weak notions of Jacobian determinant and relaxation

  • Guido De Philippis (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.