Skip to main content Accessibility help
×
Home

The wave equation with oscillating density: observability at low frequency

  • Gilles Lebeau (a1)

Abstract

We prove an observability estimate for a wave equation with rapidly oscillating density, in a bounded domain with Dirichlet boundary condition.

Copyright

References

Hide All
[1] Avellaneda, M., Bardos, C. and Rauch, J., Contrôlabilité exacte, homogénéisation et localisation d'ondes dans un milieu non-homogène. Asymptot. Anal. 5 (1992) 481-484.
[2] Allaire, G. and Conca, C., Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208.
[3] N. Burq and G. Lebeau, Mesures de défaut de compacité; applications au système de Lamé, preprint.
[4] Bardos, C., Lebeau, G. and Rauch, J., Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1075.
[5] C. Castro, Boundary controllability of the one dimensional wave equation with rapidly oscillating density, preprint.
[6] Castro, C. and Zuazua, E., Contrôle de l'équation des ondes à densité rapidement oscillante à une dimension d'espace. C. R. Acad. Sci. Paris 324 (1997) 1237-1242.
[7] P. Gérard, Mesures semi-classiques et ondes de Bloch, Séminaire X EDP, exposé 16 (1991).
[8] Gérard, P. and Leichtnam, E., Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J. 71 (1993) 559-607.
[9] Lebeau, G., Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1993) 267-291.
[10] G. Lebeau, Équation des ondes amorties, Algebraic and Geometric Methods in Mathematical Physics, A. Boutet de Monvel and V. Marchenko, Eds. Kluwer Academic Publishers (1996) 73-109.
[11] R. Melrose and J. Sjöstrand, Singularities of boundary value problems I, II. Comm. Pure Appl. Math. 31 (1978) 593-617; 35 (1982) 129-168.

Keywords

Related content

Powered by UNSILO

The wave equation with oscillating density: observability at low frequency

  • Gilles Lebeau (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.