Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T10:22:33.632Z Has data issue: false hasContentIssue false

Magnetic vortices for a Ginzburg-Landau type energy withdiscontinuous constraint

Published online by Cambridge University Press:  18 June 2009

Ayman Kachmar*
Affiliation:
Université Paris-Sud, Département de mathématique, Bât. 425, 91405 Orsay, France. Aarhus University, Department of mathematical sciences, 1530 Ny Munkegade, 8000 Aarhus C, Denmark. ayman.kachmar@math.u-psud.fr
Get access

Abstract

This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aftalion, A., Sandier, E. and Serfaty, S., Pinning phenomena in the Ginzburg-Landau model of superconductivity. J. Math. Pures Appl. 80 (2001) 339372. CrossRef
Aftalion, A., Alama, S. and Bronsard, L., Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate. Arch. Rational Mech. Anal. 178 (2005) 247286. CrossRef
Alama, S. and Bronsard, L., Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions. J. Math. Phys. 46 (2005) 095102. CrossRef
S. Alama and L. Bronsard, Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains. Comm. Pure Appl. Math. LIX (2006) 0036–0070.
André, N., Baumann, P. and Phillips, D., Vortex pinning with bounded fields for the Ginzburg-Landau equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 705729. CrossRef
Aydi, H. and Kachmar, A., Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Comm. Pure Appl. Anal. 8 (2009) 977998.
Béthuel, F. and Rivière, T., Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243303. CrossRef
F. Béthuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Birkhäuser, Boston-Basel-Berlin (1994).
Chapman, S.J. and Richardson, G., Vortex pinning by inhomogenities in type II superconductors. Phys. D 108 (1997) 397407. CrossRef
Chapman, S.J., Du, Q. and Gunzburger, M.D., Ginzburg La, Andau type model of superconducting/normal junctions including Josephson junctions. European J. Appl. Math. 6 (1996) 97114.
P.G. de Gennes, Superconductivity of metals and alloys. Benjamin (1966).
Du, Q., Gunzburger, M. and Peterson, J., Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Reviews 34 (1992) 529560. CrossRef
Fink, H.J. and Joiner, W.C.H., Surface nucleation and boundary conditions in superconductors. Phys. Rev. Lett. 23 (1969) 120. CrossRef
Giorgi, T., Superconductors surrounded by normal materials. Proc. Roy. Soc. Edinburgh Sec. A 135 (2005) 331356.
Giorgi, T. and Phillips, D., The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model. SIAM J. Math. Anal. 30 (1999) 341359. CrossRef
J.O. Indekeu, F. Clarysse and E. Montevecchi, Wetting phase transition and superconductivity: The role of suface enhancement of the order parameter in the GL theory. Procceding of the NATO ASI, Albena, Bulgaria (1998).
Kachmar, A., On the ground state energy for a magnetic Schrödinger operator and the effect of the de Gennes boundary condition. J. Math. Phys. 47 (2006) 072106. CrossRef
Kachmar, A., On the perfect superconducting state for a generalized Ginzburg-Landau equation. Asymptot. Anal. 54 (2007) 125164.
Kachmar, A., On the stability of normal states for a generalized Ginzburg-Landau model. Asymptot. Anal. 55 (2007) 145201.
Kachmar, A., Weyl asymptotics for magnetic Schrödinger opertors and de Gennes' boundary condition. Rev. Math. Phys. 20 (2008) 901932. CrossRef
Kachmar, A., Magnetic Ginzburg-Landau functional with discontinuous constraint. C. R. Math. Acad. Sci. Paris 346 (2008) 297300. CrossRef
Kachmar, A., Limiting jump conditions for Josephson junctions in Ginzburg-Landau theory. Differential Integral Equations 21 (2008) 95130.
Lassoued, L. and Mironescu, P., Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 126. CrossRef
Lu, K. and Pan, X.-B., Ginzburg-Landau equation with de Gennes boundary condition. J. Diff. Equ. 129 (1996) 136-165. CrossRef
Meyers, N.G., An Lp estimate for the gradient of solutions of second order elliptic equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189206.
Montevecchi, E. and Indekeu, J.O., Effects of confinement and surface enhancement on superconductivity. Phys. Rev. B 62 (2000) 661666. CrossRef
J. Rubinstein, Six lectures in superconductivity, in Boundaries, Interfaces and Transitions (Banff, AB, 1995), CRM Proc., Lecture Notes 13, Amer. Math. Soc., Providence, RI (1998) 163–184.
Sandier, E. and Serfaty, S., Ginzburg-Landau minimizers near the first critical field have bounded vorticity. Calc. Var. Partial Differ. Equ. 17 (2003) 1728. CrossRef
E. Sandier and S. Serfaty, Vortices for the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications 70. Birkhäuser Boston (2007).
Serfaty, S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field. I. Commun. Contemp. Math. 1 (1999) 213254. CrossRef
Serfaty, S., Local minimizers for the Ginzburg-Landau energy near critical magnetic field. II. Commun. Contemp. Math. 1 (1999) 295333. CrossRef
Sigal, I.M. and Ting, F., Pinning of magnetic vortices by an external potential. St. Petresburg Math. J. 16 (2005) 211236. CrossRef
G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus. Séminaire de Mathématiques Supérieures No. 16 (Été, 1965), Les Presses de l'Université de Montréal, Montréal, Québec (1966) 326 p.