Skip to main content Accessibility help
×
Home

Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands

  • Micol Amar (a1), Virginia De Cicco (a1) and Nicola Fusco (a2)

Abstract

New L 1-lower semicontinuity and relaxation results for integral functionals defined in BV(Ω) are proved, under a very weak dependence of the integrand with respect to the spatial variable x. More precisely, only the lower semicontinuity in the sense of the 1-capacity is assumed in order to obtain the lower semicontinuity of the functional. This condition is satisfied, for instance, by the lower approximate limit of the integrand, if it is BV with respect to x. Under this further BV dependence, a representation formula for the relaxed functional is also obtained.

Copyright

References

Hide All
[1] Amar, M., and Bellettini, G., A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. Henri Poincaré 11 (1994) 91133.
[2] M. Amar and V. De Cicco, Relaxation in BV for a class of functionals without continuity assumptions. NoDEA Nonlinear Differential Equations Appl. (to appear).
[3] Amar, M., De Cicco, V. and Fusco, N., A relaxation result in BV for integral functionals with discontinuous integrands. ESAIM: COCV 13 (2007) 396412.
[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford University Press, New York (2000).
[5] Anzellotti, G., Buttazzo, G. and Dal Maso, G., Dirichlet problem for demi-coercive functionals. Nonlinear Anal. 10 (1986) 603613.
[6] Bouchitté, G. and Valadier, M., Integral representation of convex functionals on a space of measures. J. Funct. Anal. 80 (1988) 398420.
[7] Bouchitté, G., Fonseca, I. and Mascarenhas, L., A global method for relaxation. Arch. Rat. Mech. Anal. 145 (1998) 5198.
[8] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation Problems in the Calculus of Variations. Pitman Res. Notes in Math., Longman, Harlow (1989).
[9] Carriero, M., Dal Maso, G., Leaci, A. and Pascali, E., Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359396.
[10] Dal Maso, G., Integral representation on $BV(\Omega)$ of Γ-limits of variational integrals. Manuscripta Math. 30 (1980) 387416.
[11] Dal Maso, G., On the integral representation of certain local functionals. Ricerche di Matematica 32 (1983) 85113.
[12] G. Dal Maso, An Introduction to Γ-convergence. Birkhäuser, Boston (1993).
[13] V. De Cicco and G. Leoni, A chain rule in $L^1({\rm div};\Omega)$ and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 19 (2004) 23–51.
[14] De Cicco, V., Fusco, N. and Verde, A., On L 1-lower semicontinuity in $BV(\Omega)$ . J. Convex Analysis 12 (2005) 173185.
[15] De Cicco, V., Fusco, N. and Verde, A., A chain rule formula in $BV(\Omega)$ and its applications to lower semicontinuity. Calc. Var. Partial Differential Equations 28 (2007) 427447.
[16] De Giorgi, E. and Franzoni, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58 (1975) 842850.
[17] De Giorgi, E. and Franzoni, T., Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63101.
[18] Federer, H. and Ziemer, W.P., The Lebesgue set of a function whose distribution derivatives are p-th power summable. Indiana Un. Math. J. 22 (1972) 139158.
[19] I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Royal Soc. Edinb., Sect. A, Math. 131 (2001) 519–565.
[20] Fonseca, I. and Müller, S., Quasi-convex integrands and lower semicontinuity in L 1. SIAM J. Math. Anal. 23 (1992) 10811098.
[21] Fonseca, I. and Müller, S., Relaxation of quasiconvex functionals in BV $(\Omega,\mathbb{R}^p)$ for integrands $f(x,u,\nabla u)$ . Arch. Rat. Mech. Anal. 123 (1993) 149.
[22] Fusco, N., Giannetti, F. and Verde, A., A remark on the L 1-lower semicontinuity for integral functionals in BV. Manuscripta Math. 112 (2003) 313323.
[23] Fusco, N., Gori, M. and Maggi, F., A remark on Serrin's Theorem. NoDEA Nonlinear Differential Equations Appl. 13 (2006) 425433.
[24] Gori, M. and Maggi, F., The common root of the geometric conditions in Serrin's semicontinuity theorem. Ann. Mat. Pura Appl. 184 (2005) 95114.
[25] Gori, M., Maggi, F. and Marcellini, P., On some sharp conditions for lower semicontinuity in L 1. Diff. Int. Eq. 16 (2003) 5176.
[26] Maggi, F., On the relaxation on BV of certain non coercive integral functionals. J. Convex Anal. 10 (2003) 477489.
[27] Miranda, M., Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani. Ann. Scuola Norm. Sup. Pisa 18 (1964) 515542.
[28] Reshetnyak, Y.G., Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 10391045.

Keywords

Related content

Powered by UNSILO

Lower semicontinuity and relaxation results in BV for integral functionals with BV integrands

  • Micol Amar (a1), Virginia De Cicco (a1) and Nicola Fusco (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.