Skip to main content Accessibility help
×
Home

Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

  • ludovic faubourg (a1) and jean-baptiste pomet (a2)

Abstract

This paper presents a method to design explicit control Lyapunov functions for affine and homogeneous systems that satisfy the so-called “Jurdjevic-Quinn conditions”. For these systems a positive definite function V 0 is known that can only be made non increasing by feedback. We describe how a control Lyapunov function can be obtained via a deformation of this “weak” Lyapunov function. Some examples are presented, and the linear quadratic situation is treated as an illustration.

Copyright

References

Hide All
[1] Aeyels, D., Stabilization of a class of nonlinear systems by smooth feedback control. Systems Control Lett. 5 (1985) 289-294.
[2] Artstein, Z., Stabilization with relaxed control. Nonlinear Anal. TMA 7 (1983) 1163-1173.
[3] A. Bacciotti, Local stabilizability of nonlinear control systems. World Scientific, Singapore, River Edge, London, Ser. Adv. Math. Appl. Sci. 8 (1992).
[4] R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Basel-Boston, Birkäuser (1983) 181-191.
[5] Bupp, R.T., Bernstein, D.S. and Coppola, V.T., A benchmark problem for nonlinear control design. Internat J. Robust Nonlinear Control 8 (1998) 307-310.
[6] height 2pt depth -1.6pt width 23pt, Experimental, implementation of integrator back-stepping and passive nonlinear controllers on the RTAC testbed. Internat J. Robust Nonlinear Control 8 (1998) 435-457.
[7] J.-M. Coron, L. Praly and A.R. Teel, Feedback stabilization of nonlinear system: Sufficient conditions and lyapunov and input-output techniques, in Trends in Control, a European Perspective, edited by A. Isidori. Springer-Verlag (1995) 283-348.
[8] L. Faubourg, La déformation de fonctions de Lyapunov, Rapport de DEA d'automatique et informatique industrielle. INRIA-Université de Lille 1 (1997).
[9] L. Faubourg and J.-B. Pomet, Strict control Lyapunov functions for homogeneous Jurdjevic-Quinn type systems, in Nonlinear Control Systems Design Symposium (NOLCOS'98), edited by H. Huijberts, H. Nijmeijer, A. van der Schaft and J. Scherpen. IFAC (1998) 823-829.
[10] L. Faubourg and J.-B. Pomet, Design of control Lyapunov functions for ``Jurdjevic-Quinn'' systems, in Stability and Stabilization of Nonlinear Systems, edited by D. Aeyels et al. Springer-Verlag, Lecture Notes in Contr. & Inform. Sci. (1999) 137-150.
[11] J.-P. Gauthier, Structure des Systèmes non-linéaires. Éditions du CNRS, Paris (1984).
[12] W. Hahn, Stability of Motion. Springer-Verlag, Berlin, New-York, Grundlehren Math. Wiss. 138 (1967).
[13] Jurdjevic, V. and Quinn, J.P., Controllability and stability. J. Differential Equations 28 (1978) 381-389.
[14] M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Adv. Technol. 6 (1990), 497-516.
[15] H.K. Khalil, Nonlinear Systems. MacMillan, New York, Toronto, Singapore (1992).
[16] J. Kurzweil, On the inversion of Ljapunov's second theorem on stability of motion. AMS Trans., Ser. II 24 (1956) 19-77.
[17] LaSalle, J.-P., Stability theory for ordinary differential equations. J. Differential Equations 4 (1968) 57-65.
[18] W. Liu, Y. Chitour and E. Sontag, Remarks on finite gain stabilizability of linear systems subject to input saturation, in 32 $^{{\rm th}}$ IEEE Conf. on Decision and Control. San Antonio, USA (1993) 1808-1813.
[19] F. Mazenc, Stabilisation de trajectoires, ajout d'intégration, commandes saturées, Thèse de doctorat. École des Mines de Paris (1989).
[20] Morin, P., Robust stabilization of the angular velocity of a rigid body with two actuators. European J. Control 2 (1996) 51-56.
[21] Outbib, R. and Sallet, G., Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett. 18 (1992) 93-98.
[22] G. Sallet, Historique des techniques de Jurdjevic-Quinn (private communication).
[23] R. Sépulchre, M. Jankovic and P.V. Kokotovic, Constructive Nonlinear Control. Springer-Verlag, Comm. Control Engrg. Ser. (1997).
[24] E.D. Sontag, Feedback stabilization of nonlinear systems, in Robust control of linear systems and nonlinear control, Vol. 2 of proceedings of MTNS'89, edited by M.A. Kaashoek, J.H. van Schuppen and A. Ran. Basel-Boston, Birkhäuser (1990) 61-81.
[25] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish, Houston, second Ed. (1979).
[26] Tsinias, J., Remarks on feedback stabilizability of homogeneous systems. Control Theory and Adv. Technol. 6 (1990) 533-542.
[27] Zhao, J. and Kanellakopoulos, I., Flexible back-stepping design for tracking and disturbance attenuation. Internat J. Robust Nonlinear Control 8 (1998) 331-348.

Keywords

Related content

Powered by UNSILO

Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems

  • ludovic faubourg (a1) and jean-baptiste pomet (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.