Home

# Weighted multiple ergodic averages and correlation sequences

## Abstract

We study mean convergence results for weighted multiple ergodic averages defined by commuting transformations with iterates given by integer polynomials in several variables. Roughly speaking, we prove that a bounded sequence is a good universal weight for mean convergence of such averages if and only if the average of this sequence times any nilsequence converges. Two decomposition results of independent interest play key roles in the proof. The first states that every bounded sequence in several variables satisfying some regularity conditions is a sum of a nilsequence and a sequence that has small uniformity norm (this generalizes a result of the second author and Kra); and the second states that every multiple correlation sequence in several variables is a sum of a nilsequence and a sequence that is small in uniform density (this generalizes a result of the first author). Furthermore, we use these results in order to establish mean convergence and recurrence results for a variety of sequences of dynamical and arithmetic origin and give some combinatorial implications.

## References

Hide All
[1] Assani, I., Duncan, D. and Moore, R.. Pointwise characteristic factors for Wiener–Wintner double recurrence theorem. Ergod. Th. & Dynam. Sys. to appear. Preprint, 2014, arXiv:1402.7094.
[2] Assani, I. and Moore, R.. Extension of Wiener–Wintner double recurrence theorem to polynomials. J. Anal. Math. to appear. Preprint, 2014, arXiv:1409.0463.
[3] Assani, I. and Moore, R.. A good universal weight for nonconventional ergodic averages in norm. Ergod. Th. & Dynam. Sys. to appear. Preprint, 2015, arXiv:1503.08863.
[4] Assani, I. and Moore, R.. A good universal weight for multiple recurrence averages with commuting transformations in norm. Preprint, 2015, arXiv:1506.06730.
[5] Auslander, J.. Minimal Flows and Their Extensions. North-Holland, Amsterdam, 1988.
[6] Auslander, L., Green, L. and Hahn, F.. Flows on homogeneous spaces. With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. (Annals of Mathematics Studies, 53) . Princeton University Press, Princeton, NJ, 1963.
[7] Austin, T.. On the norm convergence of nonconventional ergodic averages. Ergod. Th. & Dynam. Sys. 30 (2010), 321338.
[8] Austin, T.. Pleasant extensions retaining algebraic structure, I. J. Anal. Math. 125 (2015), 136.
[9] Austin, T.. Pleasant extensions retaining algebraic structure, II. J. Anal. Math. 126 (2015), 1111.
[10] Bergelson, V.. Weakly mixing PET. Ergod. Th. & Dynam. Sys. 7(3) (1987), 337349.
[11] Bergelson, V., Host, B. and Kra, B.. Multiple recurrence and nilsequences. Invent. Math. 160(2) (2005), 261303, With an appendix by I. Ruzsa.
[12] Bergelson, V. and Leibman, A.. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems. J. Amer. Math. Soc. 9 (1996), 725753.
[13] Bergelson, V. and McCutcheon, R.. An ergodic IP polynomial Szemerédi theorem. Mem. Amer. Math. Soc. 146 (2000), 695.
[14] Boshernitzan, M.. An extension of Hardy’s class L of ‘Orders of Infinity’. J. Anal. Math. 39 (1981), 235255.
[15] Boshernitzan, M.. Uniform distribution and Hardy fields. J. Anal. Math. 62 (1994), 225240.
[16] Boshernitzan, M., Kolesnik, G., Quas, A. and Wierdl, M.. Ergodic averaging sequences. J. Anal. Math. 95 (2005), 63103.
[17] Camarena, A. and Szegedy, B.. Nilspaces, nilmanifolds and their morphisms. Preprint, 2012, arXiv:1009.3825v3.
[18] Chu, Q.. Convergence of weighted polynomial multiple ergodic averages. Proc. Amer. Math. Soc. 137(4) (2009), 13631369.
[19] Chu, Q., Frantzikinakis, N. and Host, B.. Commuting averages with polynomial iterates of distinct degrees. Proc. Lond. Math. Soc. (3) 102(5) (2011), 801842.
[20] Conze, J.-P. and Lesigne, E.. Théorèmes ergodiques pour des mesures diagonales. Bull. Soc. Math. France 112(2) (1984), 143175.
[21] Conze, J.-P. and Lesigne, E.. Sur un théorème ergodique pour des mesures diagonales. Probabilités, Publ. Inst. Rech. Math. Rennes, 1987-1. Université Rennes I, Rennes, 1988, pp. 131.
[22] Daboussi, H.. Fonctions multiplicatives presque périodiques B. D’après un travail commun avec Hubert Delange. Journées Arithmétiques de Bordeaux (Conference, Université Bordeaux, Bordeaux, 1974) (Astérisque, 24–25) . Société Mathématique de France, Paris, 1975, pp. 321324.
[23] Daboussi, H. and Delange, H.. Quelques proprietes des functions multiplicatives de module au plus egal 1. C. R. Acad. Sci. Paris Ser. A 278 (1974), 657660.
[24] Daboussi, H. and Delange, H.. On multiplicative arithmetical functions whose modulus does not exceed one. J. Lond. Math. Soc. (2) 26(2) (1982), 245264.
[25] Eisner, T.. Linear sequences and weighted ergodic theorems. Abstr. Appl. Anal. (2013), Art. ID 815726.
[26] Eisner, T. and Krause, B.. (Uniform) convergence of twisted ergodic averages. Ergod. Th. & Dynam. Sys. to appear. Preprint, 2014, arXiv:1407.4736.
[27] Elliott, P.. Probabilistic Number Theory I. Springer, New York, 1979.
[28] Frantzikinakis, N.. Equidistribution of sparse sequences on nilmanifolds. J. Anal. Math. 109 (2009), 353395.
[29] Frantzikinakis, N.. Multiple correlation sequences and nilsequences. Invent. Math. 202(2) (2015), 875892.
[30] Frantzikinakis, N. and Host, B.. Higher order Fourier analysis of multiplicative functions and applications. J. Amer. Math. Soc. to appear. Preprint, 2014, arXiv:1403.0945.
[31] Frantzikinakis, N. and Host, B.. Multiple ergodic theorems for arithmetic sets. Trans. Amer. Math. Soc. to appear. Preprint, 2015, arXiv:1503.07154.
[32] Frantzikinakis, N., Host, B. and Kra, B.. The multidimensional Szemerédi theorem along shifted primes. Israel J. Math. 194(1) (2013), 331348.
[33] Furstenberg, H.. Recurrence in ergodic theory and combinatorial number theory. Princeton University Press, Princeton, NJ, 1981.
[34] Furstenberg, H. and Weiss, B.. A mean ergodic theorem for (1/N)∑ n=1 N f (T n x)g (T n 2 x). Convergence in ergodic theory and probability (Columbus, OH, 1993) (Ohio State University Mathematical Research Institute Publications, 5) . de Gruyter, Berlin, 1996, pp. 193227.
[35] Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys Monographs, vol. 101) . American Mathematical Society, Providence, RI, 2003.
[36] Granville, A. and Soundararajan, K.. Multiplicative Number Theory: The Pretentious Approach. Book manuscript in preparation.
[37] Green, B. and Tao, T.. An inverse theorem for the Gowers U 3(G)-norm. Proc. Edinb. Math. Soc. 51(1) (2008), 73153.
[38] Green, B. and Tao, T.. The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math. (2) 175(2) (2012), 465540.
[39] Green, B. and Tao, T.. On the quantitative distribution of polynomial nilsequences-erratum. Ann. of Math. (2) 179(3) (2014), 11751183. arXiv:1311.6170v3.
[40] Green, B., Tao, T. and Ziegler, T.. An inverse theorem for the Gowers U s+1[N]-norm. Ann. of Math. (2) 176(2) (2012), 12311372.
[41] Griesmer, J. T.. Ergodic averages, correlation sequences, and sumsets. PhD Thesis, Ohio State University, 2009. Available at: http://rave.ohiolink.edu/etdc/view?acc_num=osu1243973834.
[42] Halász, G.. Über die Mittelwerte multiplikativer zahlentheoretischer Funktionen. Acta Math. Acad. Sci. Hung. 19 (1968), 365403.
[43] Host, B.. Ergodic seminorms for commuting transformations and applications. Studia Math. 195 (2009), 3149.
[44] Host, B. and Kra, B.. Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161 (2005), 397488.
[45] Host, B. and Kra, B.. Convergence of polynomial ergodic averages. Israel J. Math. 149 (2005), 119.
[46] Host, B. and Kra, B.. Uniformity seminorms on and applications. J. Anal. Math. 108 (2009), 219276.
[47] Host, B. and Kra, B.. A point of view on Gowers uniformity norms. New York J. Math. 18 (2012), 213248.
[48] Kátai, I.. A remark on a theorem of H. Daboussi. Acta Math. Hungar. 47 (1986), 223225.
[49] Kechris, A.. Classical descriptive set theory (Graduate Texts in Mathematics, 156) . Springer, New York, 1995.
[50] Leibman, A.. Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold. Ergod. Th. & Dynam. Sys. 25(1) (2005), 201213.
[51] Leibman, A.. Pointwise convergence of ergodic averages for polynomial actions of ℤ d by translations on a nilmanifold. Ergod. Th. & Dynam. Sys. 25(1) (2005), 215225.
[52] Leibman, A.. Convergence of multiple ergodic averages along polynomials of several variables. Israel J. Math. 146 (2005), 303316.
[53] Leibman, A.. Multiple polynomial correlation sequences and nilsequences. Ergod. Th. & Dynam. Sys. 30(3) (2010), 841854.
[54] Leibman, A.. Nilsequences, null-sequences, and multiple correlation sequences. Ergod. Th. & Dynam. Sys. 35(1) (2015), 176191.
[55] Leibman, A.. Correction to the paper ‘Nilsequences, null-sequences, and multiple correlation sequences’. Preprint, 2012, arXiv:1205.4004.
[56] Lesigne., E.. Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques. Ergod. Th. & Dynam. Sys. 11(2) (1991), 379391.
[57] Meiri, D.. Generalized correlation sequences, Master’s thesis, Tel Aviv University, 1990. Available at:http://taalul.com/David/Math/ma.pdf.
[58] Parry, W.. Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math. 91 (1969), 757771.
[59] Parry, W.. Dynamical systems on nilmanifolds. Bull. Lond. Math. Soc. 2 (1970), 3740.
[60] Rudolph, D.. Eigenfunctions of T × S and the Conze–Lesigne algebra. Ergodic Theory and its Connections with Harmonic Analysis (Alexandria, 1993). (London Mathematical Society Lecture Note Series, 205) . Cambridge University Press, Cambridge, 1995, pp. 369432.
[61] Szegedy, B.. On higher order Fourier analysis. Preprint, 2012, arXiv:1203.2260v1.
[62] Tao, T.. Norm convergence of multiple ergodic averages for commuting transformations. Ergod. Th. & Dynam. Sys. 28(2) (2008), 657688.
[63] Tao, T.. Deducing the inverse theorem for the multidimensional Gowers norms from the one-dimensional version, Blog entry, https://terrytao.wordpress.com/2015/07/24.
[64] Walsh, M.. Norm convergence of nilpotent ergodic averages. Ann. of Math. (2) 175(3) (2012), 16671688.
[65] Wirsing, E.. Das asymptotische Verhalten von Summen uber multiplikative Funktionen, II. Acta Math. Acad. Sci. Hungar 18 (1967), 411467.
[66] Ziegler, T.. Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20 (2007), 5397.
[67] Zorin-Kranich, P.. Norm convergence of multiple ergodic averages on amenable groups. J. Anal. Math. to appear. Preprint, 2011, arXiv:1111.7292.
[68] Zorin-Kranich, P.. A uniform nilsequence Wiener–Wintner theorem for bilinear ergodic averages. Preprint, 2015, arXiv:1504.04647.

# Weighted multiple ergodic averages and correlation sequences

## Metrics

### Full text viewsFull text views reflects the number of PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 0 *