Skip to main content Accessibility help
×
Home

Schrödinger operators with dynamically defined potentials

Published online by Cambridge University Press:  11 February 2016

DAVID DAMANIK
Affiliation:
Department of Mathematics, Rice University, Houston, TX 77005, USA email damanik@rice.edu
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

In this survey we discuss spectral and quantum dynamical properties of discrete one-dimensional Schrödinger operators whose potentials are obtained by real-valued sampling along the orbits of an ergodic invertible transformation. After an introductory part explaining basic spectral concepts and fundamental results, we present the general theory of such operators, and then provide an overview of known results for specific classes of potentials. Here we focus primarily on the cases of random and almost periodic potentials.

Type
Survey Article
Copyright
© Cambridge University Press, 2016 

References

Aubry, S. and André, G.. Analyticity breaking and Anderson localization in incommensurate lattices. Group Theoretical Methods in Physics (Proceedings of the Eighth International Colloquium, Kiryat Anavim, 1979) (Annals of the Israel Physical Society, 3) . Hilger, Bristol, 1980, pp. 133164.Google Scholar
Avila, A.. The absolutely continuous spectrum of the almost Mathieu operator. Preprint, 2008, arXiv:0810.2965.Google Scholar
Avila, A.. Global theory of one-frequency Schrödinger operators. Acta Math. 215(1) (2015), 154.CrossRefGoogle Scholar
Avila, A.. Almost reducibility and absolute continuity I. Preprint, 2010, arXiv:1006.0704.Google Scholar
Avila, A.. On point spectrum with critical coupling. Preprint.Google Scholar
Avila, A.. Lyapunov exponents, KAM and the spectral dichotomy for one-frequency Schrödinger operators. In preparation.Google Scholar
Avila, A.. On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators. Comm. Math. Phys. 288 (2009), 907918.CrossRefGoogle Scholar
Avila, A.. On the Kotani–Last and Schrödinger conjectures. J. Amer. Math. Soc. 28 (2015), 579616.CrossRefGoogle Scholar
Avila, A., Bochi, J. and Damanik, D.. Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math. J. 146 (2009), 253280.CrossRefGoogle Scholar
Avila, A., Bochi, J. and Damanik, D.. Opening gaps in the spectrum of strictly ergodic Schrödinger operators. J. Eur. Math. Soc. (JEMS) 14 (2012), 61106.CrossRefGoogle Scholar
Avila, A. and Damanik, D.. Schrödinger operators with potentials generated by hyperbolic transformations. In preparation.Google Scholar
Avila, A. and Damanik, D.. Generic singular spectrum for ergodic Schrödinger operators. Duke Math. J. 130 (2005), 393400.CrossRefGoogle Scholar
Avila, A. and Damanik, D.. Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling. Invent. Math. 172 (2008), 439453.CrossRefGoogle Scholar
Avila, A., Damanik, D. and Zhang, Z.. Singular density of states measure for subshift and quasi-periodic Schrödinger operators. Comm. Math. Phys. 330 (2014), 469498.CrossRefGoogle Scholar
Avila, A. and Jitomirskaya, S.. The ten martini problem. Ann. of Math. (2) 170 (2009), 303342.CrossRefGoogle Scholar
Avila, A. and Jitomirskaya, S.. Almost localization and almost reducibility. J. Eur. Math. Soc. (JEMS) 12 (2010), 93131.CrossRefGoogle Scholar
Avila, A. and Krikorian, R.. Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. of Math. (2) 164 (2006), 911940.CrossRefGoogle Scholar
Avila, A., You, J. and Zhou, Q.. In preparation.Google Scholar
Avron, J. and Simon, B.. Almost periodic Schrödinger operators. I. Limit periodic potentials. Comm. Math. Phys. 82 (1981), 101120.CrossRefGoogle Scholar
Avron, J. and Simon, B.. Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math. J. 50 (1983), 369391.CrossRefGoogle Scholar
Avron, J., van Mouche, P. and Simon, B.. On the measure of the spectrum for the almost Mathieu operator. Comm. Math. Phys. 132 (1990), 103118.CrossRefGoogle Scholar
Behncke, H.. Absolute continuity of Hamiltonians with von Neumann Wigner potentials. II. Manuscripta Math. 71 (1991), 163181.CrossRefGoogle Scholar
Bellissard, J.. Spectral properties of Schrödinger’s operator with a Thue–Morse potential. Number Theory and Physics (Les Houches, 1989). Springer, Berlin, 1990, pp. 140150.CrossRefGoogle Scholar
Bellissard, J.. Gap labelling theorems for Schrödinger operators. From Number Theory to Physics (Les Houches, 1989). Springer, Berlin, 1992, pp. 538630.CrossRefGoogle Scholar
Bellissard, J., Bovier, A. and Ghez, J.-M.. Spectral properties of a tight binding Hamiltonian with period doubling potential. Comm. Math. Phys. 135 (1991), 379399.CrossRefGoogle Scholar
Bellissard, J., Iochum, B., Scoppola, E. and Testard, D.. Spectral properties of one-dimensional quasicrystals. Comm. Math. Phys. 125 (1989), 527543.CrossRefGoogle Scholar
Bellissard, J. and Simon, B.. Cantor spectrum for the almost Mathieu equation. J. Funct. Anal. 48 (1982), 408419.CrossRefGoogle Scholar
de Bièvre, S. and Germinet, F.. Dynamical localization for the random dimer Schrödinger operator. J. Stat. Phys. 98 (2000), 11351148.CrossRefGoogle Scholar
Bjerklöv, K.. Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrödinger equations. Ergod. Th. & Dynam. Sys. 25 (2005), 10151045.CrossRefGoogle Scholar
Bjerklöv, K.. Explicit examples of arbitrarily large analytic ergodic potentials with zero Lyapunov exponent. Geom. Funct. Anal. 16 (2006), 11831200.CrossRefGoogle Scholar
Boshernitzan, M.. Uniform distribution and Hardy fields. J. Anal. Math. 62 (1994), 225240.CrossRefGoogle Scholar
Boshernitzan, M. and Damanik, D.. Generic continuous spectrum for ergodic Schrödinger operators. Comm. Math. Phys. 283 (2008), 647662.CrossRefGoogle Scholar
Bourgain, J.. On the spectrum of lattice Schrödinger operators with deterministic potential. J. Anal. Math. 87 (2002), 3775.CrossRefGoogle Scholar
Bourgain, J.. On the spectrum of lattice Schrödinger operators with deterministic potential II. J. Anal. Math. 88 (2002), 221254.CrossRefGoogle Scholar
Bourgain, J.. Positivity and continuity of the Lyapounov exponent for shifts on T d with arbitrary frequency vector and real analytic potential. J. Anal. Math. 96 (2005), 313355.CrossRefGoogle Scholar
Bourgain, J.. Green’s Function Estimates for Lattice Schrödinger Operators and Applications (Annals of Mathematics Studies, 158) . Princeton University Press, Princeton, 2005.CrossRefGoogle Scholar
Bourgain, J. and Goldstein, M.. On nonperturbative localization with quasi-periodic potential. Ann. of Math. (2) 152 (2000), 835879.CrossRefGoogle Scholar
Bourgain, J., Goldstein, M. and Schlag, W.. Anderson localization for Schrödinger operators on ℤ with potentials given by the skew-shift. Comm. Math. Phys. 220 (2001), 583621.CrossRefGoogle Scholar
Bourgain, J. and Jitomirskaya, S.. Anderson localization for the band model. Geometric Aspects of Functional Analysis (Lecture Notes in Mathematics, 1745) . Springer, Berlin, 2000, pp. 6779.CrossRefGoogle Scholar
Bourgain, J. and Jitomirskaya, S.. Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential. J. Stat. Phys. 108 (2002), 12031218.CrossRefGoogle Scholar
Bourgain, J. and Jitomirskaya, S.. Absolutely continuous spectrum for 1D quasiperiodic operators. Invent. Math. 148 (2002), 453463.CrossRefGoogle Scholar
Bovier, A. and Ghez, J.-M.. Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions. Comm. Math. Phys. 158 (1993), 4566; Erratum: Comm. Math. Phys. 166 (1994), 431–432.CrossRefGoogle Scholar
Breuer, J., Last, Y. and Strauss, Y.. Eigenvalue spacings and dynamical upper bounds for discrete one-dimensional Schrödinger operators. Duke Math. J. 157 (2011), 425460.CrossRefGoogle Scholar
Buschmann, D.. A proof of the Ishii–Pastur theorem by the method of subordinacy. Univ. Iagel. Acta Math. 34 (1997), 2934.Google Scholar
Cantat, S.. Bers and Hénon, Painlevé and Schrödinger. Duke Math. J. 149 (2009), 411460.CrossRefGoogle Scholar
Carleson, L.. On H in multiply connected domains. Harmonic Analysis. Conference in Honor of Antony Zygmund, Vol. II. 1983, pp. 349382.Google Scholar
Carmona, R., Klein, A. and Martinelli, F.. Anderson localization for Bernoulli and other singular potentials. Comm. Math. Phys. 108 (1987), 4166.CrossRefGoogle Scholar
Carvalho, S. and de Oliveira, C.. Quasiballistic almost Mathieu operators are generic. Preprint.Google Scholar
Casdagli, M.. Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Comm. Math. Phys. 107 (1986), 295318.CrossRefGoogle Scholar
Choi, M., Elliott, G. and Yui, N.. Gauss polynomials and the rotation algebra. Invent. Math. 99 (1990), 225246.CrossRefGoogle Scholar
Chulaevsky, V.. Perturbations of a Schrödinger operator with periodic potential. Uspekhi Mat. Nauk 36 (1981), 203204.Google Scholar
Combes, J.-M.. Connections between quantum dynamics and spectral properties of time-evolution operators. Differential Equations with Applications to Mathematical Physics. Academic Press, Boston, 1993, pp. 5968.CrossRefGoogle Scholar
Craig, W.. Pure point spectrum for discrete almost periodic Schrödinger operators. Comm. Math. Phys. 88 (1983), 113131.CrossRefGoogle Scholar
Craig, W. and Simon, B.. Subharmonicity of the Lyaponov index. Duke Math. J. 50 (1983), 551560.CrossRefGoogle Scholar
Damanik, D.. 𝛼-continuity properties of one-dimensional quasicrystals. Comm. Math. Phys. 192 (1998), 169182.CrossRefGoogle Scholar
Damanik, D.. Singular continuous spectrum for the period doubling Hamiltonian on a set of full measure. Comm. Math. Phys. 196 (1998), 477483.CrossRefGoogle Scholar
Damanik, D.. Singular continuous spectrum for a class of substitution Hamiltonians. Lett. Math. Phys. 46 (1998), 303311.CrossRefGoogle Scholar
Damanik, D.. Singular continuous spectrum for a class of substitution Hamiltonians II. Lett. Math. Phys. 54 (2000), 2531.CrossRefGoogle Scholar
Damanik, D.. Gordon-type arguments in the spectral theory of one-dimensional quasicrystals. Directions in Mathematical Quasicrystals. American Mathematical Society, Providence, 2000, pp. 277305.Google Scholar
Damanik, D.. Uniform singular continuous spectrum for the period doubling Hamiltonian. Ann. Henri Poincaré 2 (2001), 101108.CrossRefGoogle Scholar
Damanik, D.. Dynamical upper bounds for one-dimensional quasicrystals. J. Math. Anal. Appl. 303 (2005), 327341.CrossRefGoogle Scholar
Damanik, D.. Strictly ergodic subshifts and associated operators. Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday (Proceedings of Symposia in Pure Mathematics, 76) . American Mathematical Society, Providence, RI, 2007, pp. 505538, Part 2.CrossRefGoogle Scholar
Damanik, D.. Lyapunov exponents and spectral analysis of ergodic Schrödinger operators: a survey of Kotani theory and its applications. Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday (Proceedings of Symposia in Pure Mathematics, 76) . American Mathematical Society, Providence, RI, 2007, pp. 539563, Part 2.CrossRefGoogle Scholar
Damanik, D., Embree, M. and Gorodetski, A.. Spectral properties of Schrödinger operators arising in the study of quasicrystals. Mathematics of Aperiodic Order. Eds. Kellendonk, Lenz and Savinien. Springer, New York, 2015, pp. 307370.CrossRefGoogle Scholar
Damanik, D., Embree, M., Gorodetski, A. and Tcheremchantsev, S.. The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Comm. Math. Phys. 280 (2008), 499516.CrossRefGoogle Scholar
Damanik, D. and Fillman, J.. Spectral theory of discrete one-dimensional ergodic Schrödinger operators. Monograph in preparation.Google Scholar
Damanik, D. and Gan, Z.. Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents. J. Funct. Anal. 258 (2010), 40104025.CrossRefGoogle Scholar
Damanik, D. and Gan, Z.. Spectral properties of limit-periodic Schrödinger operators. Comm. Pure Appl. Anal. 10 (2011), 859871.CrossRefGoogle Scholar
Damanik, D. and Gan, Z.. Limit-periodic Schrödinger operators with uniformly localized eigenfunctions. J. Anal. Math. 115 (2011), 3349.CrossRefGoogle Scholar
Damanik, D., Ghez, J.-M. and Raymond, L.. A palindromic half-line criterion for absence of eigenvalues and applications to substitution Hamiltonians. Ann. Henri Poincaré 2 (2001), 927939.CrossRefGoogle Scholar
Damanik, D. and Gorodetski, A.. Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian. Nonlinearity 22 (2009), 123143.CrossRefGoogle Scholar
Damanik, D. and Gorodetski, A.. Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Comm. Math. Phys. 305 (2011), 221277.CrossRefGoogle Scholar
Damanik, D. and Gorodetski, A.. The density of states measure of the weakly coupled Fibonacci Hamiltonian. Geom. Funct. Anal. 22 (2012), 976989.CrossRefGoogle Scholar
Damanik, D. and Gorodetski, A.. Hölder continuity of the integrated density of states for the Fibonacci Hamiltonian. Comm. Math. Phys. 323 (2013), 497515.CrossRefGoogle Scholar
Damanik, D. and Gorodetski, A.. Almost ballistic transport for the weakly coupled Fibonacci Hamiltonian. Israel J. Math. 206 (2015), 109126.CrossRefGoogle Scholar
Damanik, D., Gorodetski, A. and Yessen, W.. The Fibonacci Hamiltonian. Preprint, 2014, arXiv:1403.7823.Google Scholar
Damanik, D. and Killip, R.. Ergodic potentials with a discontinuous sampling function are non-deterministic. Math. Res. Lett. 12 (2005), 187192.CrossRefGoogle Scholar
Damanik, D., Killip, R. and Lenz, D.. Uniform spectral properties of one-dimensional quasicrystals. III. 𝛼-continuity. Comm. Math. Phys. 212 (2000), 191204.CrossRefGoogle Scholar
Damanik, D. and Lenz, D.. Uniform spectral properties of one-dimensional quasicrystals, I. Absence of eigenvalues. Comm. Math. Phys. 207 (1999), 687696.CrossRefGoogle Scholar
Damanik, D. and Lenz, D.. Uniform spectral properties of one-dimensional quasicrystals, IV. Quasi-Sturmian potentials. J. Anal. Math. 90 (2003), 115139.CrossRefGoogle Scholar
Damanik, D. and Lenz, D.. A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem. Duke Math. J. 133 (2006), 95123.CrossRefGoogle Scholar
Damanik, D. and Lenz, D.. Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials. J. Math. Pures Appl. 85 (2006), 671686.CrossRefGoogle Scholar
Damanik, D., Lukic, M. and Yessen, W.. Quantum dynamics of periodic and limit-periodic Jacobi and block Jacobi matrices with applications to some quantum many body problems. Comm. Math. Phys. 337 (2015), 15351561.CrossRefGoogle Scholar
Damanik, D. and Stollmann, P.. Multi-scale analysis implies strong dynamical localization. Geom. Funct. Anal. 11 (2001), 1129.CrossRefGoogle Scholar
Damanik, D., Sütő, A. and Tcheremchantsev, S.. Power-law bounds on transfer matrices and quantum dynamics in one dimension II. J. Funct. Anal. 216 (2004), 362387.CrossRefGoogle Scholar
Damanik, D. and Tcheremchantsev, S.. Power-law bounds on transfer matrices and quantum dynamics in one dimension. Comm. Math. Phys. 236 (2003), 513534.CrossRefGoogle Scholar
Damanik, D. and Tcheremchantsev, S.. Scaling estimates for solutions and dynamical lower bounds on wavepacket spreading. J. Anal. Math. 97 (2005), 103131.CrossRefGoogle Scholar
Damanik, D. and Tcheremchantsev, S.. Upper bounds in quantum dynamics. J. Amer. Math. Soc. 20 (2007), 799827.CrossRefGoogle Scholar
Damanik, D. and Tcheremchantsev, S.. Quantum dynamics via complex analysis methods: general upper bounds without time-averaging and tight lower bounds for the strongly coupled Fibonacci Hamiltonian. J. Funct. Anal. 255 (2008), 28722887.CrossRefGoogle Scholar
Damanik, D. and Tcheremchantsev, S.. A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators. Discrete Contin. Dyn. Syst. 28 (2010), 13811412.CrossRefGoogle Scholar
Damanik, D. and Yuditskii, P.. Counterexamples to the Kotani–Last conjecture for continuum Schrödinger operators via character-automorphic Hardy spaces. Preprint, 2014, arXiv:1405.6343.Google Scholar
Deift, P. and Simon, B.. Almost periodic Schrödinger operators. III. The absolutely continuous spectrum in one dimension. Comm. Math. Phys. 90 (1983), 389411.CrossRefGoogle Scholar
Delyon, F. and Petritis, D.. Absence of localization in a class of Schrödinger operators with quasiperiodic potential. Comm. Math. Phys. 103 (1986), 441444.CrossRefGoogle Scholar
Delyon, F. and Peyrière, J.. Recurrence of the eigenstates of a Schrödinger operator with automatic potential. J. Stat. Phys. 64 (1991), 363368.CrossRefGoogle Scholar
Delyon, F. and Souillard, B.. Remark on the continuity of the density of states of ergodic finite difference operators. Comm. Math. Phys. 94 (1984), 289291.CrossRefGoogle Scholar
von Dreifus, H. and Klein, A.. A new proof of localization in the Anderson tight binding model. Comm. Math. Phys. 124 (1989), 285299.CrossRefGoogle Scholar
Eliasson, H.. Floquet solutions for the one-dimensional quasi-periodic Schrödinger equation. Comm. Math. Phys. 146 (1992), 447482.CrossRefGoogle Scholar
Eliasson, H.. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum. Acta Math. 179 (1997), 153196.CrossRefGoogle Scholar
Fabbri, R., Johnson, R. and Zampogni, L.. On the Lyapunov exponent of certain SL(2, ℝ)-valued cocycles II. Differ. Equ. Dyn. Syst. 18 (2010), 135161.CrossRefGoogle Scholar
Fan, S., Liu, Q.-H. and Wen, Z.-Y.. Gibbs-like measure for spectrum of a class of quasi-crystals. Ergod. Th. & Dynam. Sys. 31 (2011), 16691695.CrossRefGoogle Scholar
Fedotov, A. and Klopp, F.. Anderson transitions for a family of almost periodic Schrödinger equations in the adiabatic case. Comm. Math. Phys. 227 (2002), 192.CrossRefGoogle Scholar
Fillman, J.. Spectral homogeneity of discrete one-dimensional limit-periodic operators. J. Spectr. Theory Preprint, 2014, to appear, arXiv:1409.7734.Google Scholar
Fröhlich, J. and Spencer, T.. Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm. Math. Phys. 88 (1983), 151184.CrossRefGoogle Scholar
Fröhlich, J., Spencer, T. and Wittwer, P.. Localization for a class of one-dimensional quasi-periodic Schrödinger operators. Comm. Math. Phys. 132 (1990), 525.CrossRefGoogle Scholar
Fürstenberg, H.. Noncommuting random products. Trans. Amer. Math. Soc. 108 (1963), 377428.CrossRefGoogle Scholar
Gan, Z.. An exposition of the connection between limit-periodic potentials and profinite groups. Math. Model. Nat. Phenom. 5 (2010), 158174.CrossRefGoogle Scholar
Gan, Z. and Krüger, H.. Optimality of log Hölder continuity of the integrated density of states. Math. Nachr. 284 (2011), 19191923.Google Scholar
Germinet, F. and De Bièvre, S.. Dynamical localization for discrete and continuous random Schrödinger operators. Comm. Math. Phys. 194 (1998), 323341.CrossRefGoogle Scholar
Germinet, F. and Klein, A.. Bootstrap multiscale analysis and localization in random media. Comm. Math. Phys. 222 (2001), 415448.CrossRefGoogle Scholar
Gilbert, D.. On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints. Proc. Roy. Soc. Edinburgh Sec. A 112 (1989), 213229.CrossRefGoogle Scholar
Gilbert, D. and Pearson, D.. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators. J. Math. Anal. Appl. 128 (1987), 3056.CrossRefGoogle Scholar
Girand, A.. Dynamical Green functions and discrete Schrödinger operators with potentials generated by primitive invertible substitution. Nonlinearity 27 (2014), 527543.CrossRefGoogle Scholar
Goldstein, M. and Schlag, W.. Hölder continuity of the integrated density of states for quasi-periodic Schrödinger equations and averages of shifts of subharmonic functions. Ann. of Math. (2) 154 (2001), 155203.CrossRefGoogle Scholar
Goldstein, M. and Schlag, W.. On resonances and the formation of gaps in the spectrum of quasi-periodic Schrödinger equations. Ann. of Math. (2) 173 (2011), 337475.CrossRefGoogle Scholar
Gordon, A.. Imperfectly grown periodic medium: absence of localized states. J. Spectr. Theory, to appear.Google Scholar
Gordon, A.. On the point spectrum of the one-dimensional Schrödinger operator. Uspekhi Mat. Nauk. 31 (1976), 257258.Google Scholar
Gordon, A., Jitomirskaya, S., Last, Y. and Simon, B.. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math. 178 (1997), 169183.CrossRefGoogle Scholar
Guarneri, I.. Spectral properties of quantum diffusion on discrete lattices. Europhys. Lett. 10 (1989), 95100.CrossRefGoogle Scholar
Guarneri, I. and Schulz-Baldes, H.. Lower bounds on wave packet propagation by packing dimensions of spectral measures. Math. Phys. Electron. J. 5 (1999), Paper 1, 16 pp.Google Scholar
Hadj Amor, S.. Hölder continuity of the rotation number for quasi-periodic co-cycles in SL(2, ℝ). Comm. Math. Phys. 287 (2009), 565588.CrossRefGoogle Scholar
Han, R.. Uniform localization is always uniform. Proc. Amer. Math. Soc., to appear.Google Scholar
Helffer, B. and Sjöstrand, J.. Semiclassical analysis for Harper’s equation. III. Cantor structure of the spectrum. Mém. Soc. Math. Fr. (N.S.) 39 (1989), 1124.Google Scholar
Herman, M.. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnol’d et de Moser sur le tore de dimension 2. Comment. Math. Helv. 58 (1983), 453502.CrossRefGoogle Scholar
Hof, A., Knill, O. and Simon, B.. Singular continuous spectrum for palindromic Schrödinger operators. Comm. Math. Phys. 174 (1995), 149159.CrossRefGoogle Scholar
Iochum, B., Raymond, L. and Testard, D.. Resistance of one-dimensional quasicrystals. Phys. A 187 (1992), 353368.CrossRefGoogle Scholar
Iochum, B. and Testard, D.. Power law growth for the resistance in the Fibonacci model. J. Stat. Phys. 65 (1991), 715723.CrossRefGoogle Scholar
Ishii, K.. Localization of eigenstates and transport phenomena in the one dimensional disordered system. Supp. Theor. Phys. 53 (1973), 77138.CrossRefGoogle Scholar
Jitomirskaya, S.. Anderson localization for the almost Mathieu equation: a nonperturbative proof. Comm. Math. Phys. 165 (1994), 4957.CrossRefGoogle Scholar
Jitomirskaya, S.. Anderson localization for the almost Mathieu equation. II. Point spectrum for 𝜆 > 2. Comm. Math. Phys. 168 (1995), 563570.CrossRefGoogle Scholar
Jitomirskaya, S.. Almost everything about the almost Mathieu operator II. XIth International Congress of Mathematical Physics (Paris, 1994). International Press, Cambridge, MA, 1995, pp. 373382.Google Scholar
Jitomirskaya, S.. Continuous spectrum and uniform localization for ergodic Schrödinger operators. J. Funct. Anal. 145 (1997), 312322.CrossRefGoogle Scholar
Jitomirskaya, S.. Metal–insulator transition for the almost Mathieu operator. Ann. of Math. (2) 150 (1999), 11591175.CrossRefGoogle Scholar
Jitomirskaya, S.. Ergodic Schrödinger operators (on one foot). Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday (Proceedings of Symposia in Pure Mathematics, 76) . American Mathematical Society, Providence, RI, 2007, pp. 613647, Part 2.CrossRefGoogle Scholar
Jitomirskaya, S. and Krasovsky, I.. Continuity of the measure of the spectrum for discrete quasiperiodic operators. Math. Res. Lett. 9 (2002), 413421.CrossRefGoogle Scholar
Jitomirskaya, S. and Last, Y.. Anderson localization for the almost Mathieu equation. III. Semi-uniform localization, continuity of gaps, and measure of the spectrum. Comm. Math. Phys. 195 (1998), 114.CrossRefGoogle Scholar
Jitomirskaya, S. and Last, Y.. Power-law subordinacy and singular spectra. I. Half-line operators. Acta Math. 183 (1999), 171189.CrossRefGoogle Scholar
Jitomirskaya, S. and Last, Y.. Power-law subordinacy and singular spectra. II. Line operators. Comm. Math. Phys. 211 (2000), 643658.CrossRefGoogle Scholar
Jitomirskaya, S. and Marx, C.. Dynamics and spectral theory of quasi-periodic Schrödinger type operators. In preparation.Google Scholar
Jitomirskaya, S. and Marx, C.. Analytic quasi-perodic cocycles with singularities and the Lyapunov exponent of extended Harper’s model. Comm. Math. Phys. 316 (2012), 237267.CrossRefGoogle Scholar
Jitomirskaya, S. and Marx, C.. Analytic quasi-periodic Schrödinger operators and rational frequency approximants. Geom. Funct. Anal. 22 (2012), 14071443.CrossRefGoogle Scholar
Jitomirskaya, S. and Mavi, R.. Continuity of the measure of the spectrum for quasiperiodic Schrödinger operators with rough potentials. Comm. Math. Phys. 325 (2014), 585601.CrossRefGoogle Scholar
Jitomirskaya, S. and Schulz-Baldes, H.. Upper bounds on wavepacket spreading for random Jacobi matrices. Comm. Math. Phys. 273 (2007), 601618.CrossRefGoogle Scholar
Jitomirskaya, S., Schulz-Baldes, H. and Stolz, G.. Delocalization in random polymer models. Comm. Math. Phys. 233 (2003), 2748.CrossRefGoogle Scholar
Jitomirskaya, S. and Simon, B.. Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators. Comm. Math. Phys. 165 (1994), 201205.CrossRefGoogle Scholar
Johnson, R.. Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differential Equations 61 (1986), 5478.CrossRefGoogle Scholar
Johnson, R. and Nerurkar, M.. On SL(2, ℝ) valued cocycles of Hölder class with zero exponent over Kronecker flows. Comm. Pure Appl. Anal. 10 (2011), 873884.CrossRefGoogle Scholar
Kaminaga, M.. Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential. Forum Math. 8 (1996), 6369.CrossRefGoogle Scholar
Killip, R., Kiselev, A. and Last, Y.. Dynamical upper bounds on wavepacket spreading. Amer. J. Math. 125 (2003), 11651198.CrossRefGoogle Scholar
Klein, S.. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J. Funct. Anal. 218 (2005), 255292.CrossRefGoogle Scholar
Kohmoto, M., Kadanoff, L. and Tang, C.. Localization problem in one dimension: Mapping and escape. Phys. Rev. Lett. 50 (1983), 18701872.CrossRefGoogle Scholar
Kotani, S.. Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. Stochastic Analysis (Katata/Kyoto, 1982). North Holland, Amsterdam, 1984, pp. 225247.Google Scholar
Kotani, S.. Support theorems for random Schrödinger operators. Comm. Math. Phys. 97 (1985), 443452.CrossRefGoogle Scholar
Kotani, S.. Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1 (1989), 129133.CrossRefGoogle Scholar
Kotani, S.. Generalized Floquet theory for stationary Schrödinger operators in one dimension. Chaos Solitons Fractals 8 (1997), 18171854.CrossRefGoogle Scholar
Krüger, H.. A family of Schrödinger operators whose spectrum is an interval. Comm. Math. Phys. 290 (2009), 935939.CrossRefGoogle Scholar
Krüger, H.. An explicit skew-shift Schrödinger operator with positive Lyapunov exponent at small coupling. Preprint, 2012, arXiv:1206.1362.Google Scholar
Krüger, H.. The spectrum of skew-shift Schrödinger operators contains intervals. J. Funct. Anal. 262 (2012), 773810.CrossRefGoogle Scholar
Krüger, H.. Concentration of eigenvalues for skew-shift Schrödinger operators. J. Stat. Phys. 149 (2012), 10961111.CrossRefGoogle Scholar
Kunz, H. and Souillard, B.. Sur le spectre des opérateurs aux différences finies aléatoires. Comm. Math. Phys. 78 (1980/81), 201246.CrossRefGoogle Scholar
Last, Y.. A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants. Comm. Math. Phys. 151 (1993), 183192.CrossRefGoogle Scholar
Last, Y.. Zero measure spectrum for the almost Mathieu operator. Comm. Math. Phys. 164 (1994), 421432.CrossRefGoogle Scholar
Last, Y.. Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142 (1996), 406445.CrossRefGoogle Scholar
Last, Y. and Simon, B.. Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135 (1999), 329367.CrossRefGoogle Scholar
Le Page, E.. Répartition d’état d’un opérateur de Schrödinger aléatoire. Distribution empirique des valeurs propres d’une matrice de Jacobi. Probability Measures on Groups, VII (Oberwolfach, 1983) (Lecture Notes in Mathematics, 1064) . Springer, Berlin, 1984, pp. 309367.CrossRefGoogle Scholar
Lenz, D.. Singular continuous spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Comm. Math. Phys. 227 (2002), 119130.CrossRefGoogle Scholar
Lima, M. and de Oliveira, C.. Uniform Cantor singular continuous spectrum for nonprimitive Schrödinger operators. J. Stat. Phys. 112 (2003), 357374.CrossRefGoogle Scholar
Liu, Q.-H., Peyrière, J. and Wen, Z.-Y.. Dimension of the spectrum of one-dimensional discrete Schrödinger operators with Sturmian potentials. C. R. Math. Acad. Sci. Paris 345 (2007), 667672.CrossRefGoogle Scholar
Liu, Q.-H. and Qu, Y.-H.. Uniform convergence of Schrödinger cocycles over simple Toeplitz subshift. Ann. Henri Poincaré 12 (2011), 153172.CrossRefGoogle Scholar
Liu, Q.-H. and Qu, Y.-H.. Uniform convergence of Schrödinger cocycles over bounded Toeplitz subshift. Ann. Henri Poincaré 13 (2012), 14831500.CrossRefGoogle Scholar
Liu, Q.-H., Qu, Y.-H. and Wen, Z.-Y.. The fractal dimensions of the spectrum of Sturm Hamiltonian. Adv. Math. 257 (2014), 285336.CrossRefGoogle Scholar
Liu, Q.-H., Tan, B., Wen, Z.-X. and Wu, J.. Measure zero spectrum of a class of Schrödinger operators. J. Stat. Phys. 106 (2002), 681691.CrossRefGoogle Scholar
Liu, Q.-H. and Wen, Z.-Y.. Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials. Potential Anal. 20 (2004), 3359.CrossRefGoogle Scholar
Makarov, N.. Fine structure of harmonic measure. St. Petersburg Math. J. 10 (1999), 217268.Google Scholar
Makarov, N. and Volberg, A.. On the harmonic measure of discontinuous fractals. Preprint, 1986.Google Scholar
Marin, L.. Dynamical bounds for Sturmian Schrödinger operators. Rev. Math. Phys. 22 (2010), 859879.CrossRefGoogle Scholar
Mei, M.. Spectral properties of discrete Schrödinger operators with potentials generated by primitive invertible substitutions. J. Math. Phys. 55 (2014), 082701, 22 pp.CrossRefGoogle Scholar
Molchanov, S. and Chulaevsky, V.. The structure of a spectrum of the lacunary-limit-periodic Schrödinger operator. Funct. Anal. Appl. 18 (1984), 343344.CrossRefGoogle Scholar
Munger, P.. Frequency dependence of Hölder continuity for quasiperiodic Schrödinger operators. Preprint, 2013, arXiv:1310.8553.Google Scholar
de Oliveira, C. and Lima, M.. Singular continuous spectrum for a class of nonprimitive substitution Schrödinger operators. Proc. Amer. Math. Soc. 130 (2002), 145156.CrossRefGoogle Scholar
Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H. and Siggia, E.. One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50 (1983), 18731877.CrossRefGoogle Scholar
Pastur, L.. Spectral properties of disordered systems in the one-body approximation. Comm. Math. Phys. 75 (1980), 179196.CrossRefGoogle Scholar
Puig, J.. Cantor spectrum for the almost Mathieu operator. Comm. Math. Phys. 244 (2004), 297309.CrossRefGoogle Scholar
Qu, Y.-H.. The spectral properties of the strongly coupled Sturm Hamiltonian of constant type. Preprint, 2014, arXiv:1404.3344.Google Scholar
Raymond, L.. A constructive gap labelling for the discrete Schrödinger operator on a quasiperiodic chain. Preprint, 1997.Google Scholar
Remling, C.. The absolutely continuous spectrum of Jacobi matrices. Ann. of Math. (2) 174 (2011), 125171.CrossRefGoogle Scholar
del Rio, R., Jitomirskaya, S., Last, Y. and Simon, B.. Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations, and localization. J. Anal. Math. 69 (1996), 153200.CrossRefGoogle Scholar
Rogers, C.. Hausdorff Measures. Cambridge University Press, Cambridge, 1998.Google Scholar
Ruelle, D.. Ergodic theory of differentiable dynamical systems. Publ. Math. Inst. Hautes Études Sci. 50 (1979), 2758.CrossRefGoogle Scholar
Schwartzman, S.. Asymptotic cycles. Ann. of Math. (2) 66 (1957), 270284.CrossRefGoogle Scholar
Shechtman, D., Blech, I., Gratias, D. and Cahn, J.. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984), 19511953.CrossRefGoogle Scholar
Simon, B.. Almost periodic Schrödinger operators: a review. Adv. Appl. Math. 3 (1982), 463490.CrossRefGoogle Scholar
Simon, B.. Absence of ballistic motion. Comm. Math. Phys. 134 (1990), 209212.CrossRefGoogle Scholar
Simon, B.. Spectral analysis of rank one perturbations and applications. Mathematical Quantum Theory. II. Schrödinger Operators (Vancouver, BC, 1993) (CRM Proceedings & Lecture Notes, 8) . American Mathematical Society, Providence, RI, 1995, pp. 109149.CrossRefGoogle Scholar
Simon, B.. Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc. Amer. Math. Soc. 124 (1996), 33613369.CrossRefGoogle Scholar
Simon, B.. Schrödinger operators in the twenty-first century. Mathematical Physics 2000. Imperial College Press, London, 2000, pp. 283288.CrossRefGoogle Scholar
Simon, B.. Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging 1 (2007), 713772.CrossRefGoogle Scholar
Simon, B. and Wolff, T.. Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math. 39 (1986), 7590.CrossRefGoogle Scholar
Sinai, Ya.. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys. 46 (1987), 861909.CrossRefGoogle Scholar
Sorets, E. and Spencer, T.. Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Comm. Math. Phys. 142 (1991), 543566.CrossRefGoogle Scholar
Stahl, H. and Totik, V.. General Orthogonal Polynomials (Encyclopedia of Mathematics and its Applications, 43) . Cambridge University Press, Cambridge, 1992.CrossRefGoogle Scholar
Stolz, G.. Bounded solutions and absolute continuity of Sturm-Liouville operators. J. Math. Anal. Appl. 169 (1992), 210228.CrossRefGoogle Scholar
Sütő, A.. The spectrum of a quasiperiodic Schrödinger operator. Comm. Math. Phys. 111 (1987), 409415.CrossRefGoogle Scholar
Sütő, A.. Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56 (1989), 525531.CrossRefGoogle Scholar
Volberg, A.. On the dimension of harmonic measure of Cantor repellers. Michigan Math. J. 40 (1993), 239258.Google Scholar
Volberg, A. and Yuditskii, P.. Kotani–Last problem and Hardy spaces on surfaces of Widom type. Invent. Math. 197 (2014), 683740.CrossRefGoogle Scholar
Wang, Y. and Zhang, Z.. Cantor spectrum for a class of $C^{2}$ quasiperiodic Schrödinger operators. Preprint, 2014, arXiv:1410.0101.Google Scholar
Wang, Y. and Zhang, Z.. Uniform positivity and continuity of Lyapunov exponents for a class of C 2 quasiperiodic Schrödinger cocycles. J. Funct. Anal. 268 (2015), 25252585.CrossRefGoogle Scholar
You, J. and Zhou, Q.. Simple counter-examples to Kotani–Last conjecture via reducibility. Int. Math. Res. Not. IMRN, to appear.Google Scholar

Altmetric attention score

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 818 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-77fc7d77f9-g622z Total loading time: 0.483 Render date: 2021-01-17T09:24:04.813Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sun Jan 17 2021 09:00:54 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }