Skip to main content Accessibility help

Lower bounds for ergodic averages

  • A. LEIBMAN (a1)


We compute the exact lower bounds for some averages arising in ergodic theory. In particular, we prove that for any measure-preserving system (X,\mathcal{B},\mu,T) with \mu(X)<\infty, any A\in\mathcal{B} and any N\in\mathbb{N}, N^{-1}\sum_{n=0}^{N-1}\mu(A\cap T^{-n}A)\geq\sqrt{\mu(A)^{2}+(\mu(X)-\mu(A))^{2}}+\mu(A)-\mu(X).


Lower bounds for ergodic averages

  • A. LEIBMAN (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed