Skip to main content Accessibility help

Local entropy theory

  • ELI GLASNER (a1) and XIANGDONG YE (a2)


In this survey we offer an overview of the so-called local entropy theory, which has been in development since the early 1990s. While doing so, we emphasize the connections between the topological dynamics and the ergodic theory points of view.



Hide All
[1]Adler, R. L., Konheim, A. G. and McAndrew, M. H.. Topological entropy. Trans. Amer. Math. Soc. 114 (1965), 309319.
[2]Akin, E., Auslander, J. and Berg, K.. When is a transitive map chaotic? Convergence in Ergodic Theory and Probability (Columbus, OH, 1993) (Ohio State University Mathematical Research Institute Publications, 5). de Gruyter, Berlin, 1996, pp. 2540.
[3]Akin, E. and Glasner, E.. Residual properties and almost equicontinuity. J. Anal. Math. 84 (2001), 243286.
[4]Auslander, J.. Minimal Flows and their Extensions (North-Holland Mathematics Studies, 153). North-Holland, Amsterdam, 1988.
[5]Blanchard, F.. Fully positive topological entropy and topological mixing. Symbolic Dynamics and its Applications, 135 (Contemporary Mathematics). American Mathematical Society, Providence, RI, 1992, pp. 95105.
[6]Blanchard, F.. A disjointness theorem involving topological entropy. Bull. Math. Soc. France 121 (1993), 565578.
[7]Blanchard, F. and Huang, W.. Entropy set, extremely chaotic and entropy capacity. Discrete Contin. Dyn. Syst. 20(2) (2008), 275311.
[8]Blanchard, F. and Lacroix, Y.. Zero-entropy factors of topological flows. Proc. Amer. Math. Soc. 119 (1993), 985992.
[9]Blanchard, F., Host, B., Maass, A., Martinez, S. and Rudolph, D.. Entropy pairs for a measure. Ergod. Th. & Dynam. Sys. 15 (1995), 621632.
[10]Blanchard, F., Host, B. and Ruette, S.. Asymptotic pairs in positive-entropy systems. Ergod. Th. & Dynam. Sys. 22(3) (2002), 671686.
[11]Blanchard, F., Glasner, E. and Host, B.. A variation on the variational principle and applications to entropy pairs. Ergod. Th. & Dynam. Sys. 17 (1997), 2943.
[12]Blanchard, F., Glasner, E., Kolyada, S. and Maass, A.. On Li–Yorke pairs. J. Reine Angew. Math. 547 (2002), 5168.
[13]Blanchard, F., Host, B. and Maass, A.. Topological complexity. Ergod. Th. & Dynam. Sys. 20 (2000), 641662.
[14]Block, L. and Coppel, W.. Dymanics in One Dimension (Lecure Notes in Mathematics, 1513). Springer, Berlin, 1992.
[15]Bourgain, J., Fremlin, D. H. and Talagrand, M.. Pointwise compact sets of Baire-measurable functions. Amer. J. Math. 100 (1978), 845886.
[16]Brin, M. and Katok, A.. On local entropy. Geometric Dynamics (Rio de Janeiro, 1981) (Lecture Notes in Mathematics, 1007). Springer, Berlin, 1983, pp. 3038.
[17]Bowen, R.. Entropy for group endomorphisms and homogeneous spaces. Trans. Amer. Math. Soc. 153 (1971), 401414.
[18]Cánovas, J. S.. Topological sequence entropy of interval maps. Nonlinearity 17 (2004), 4956.
[19]Denker, M., Grillenberger, C. and Sigmund, C.. Ergodic Theory on Compact Spaces (Lecture Notes in Mathematics, 527). Springer, New York, 1976.
[20]Denker, M. and Urbanski, M.. Ergodic theory of equilibrium states for rational maps. Nonlinearity 4 (1991), 103134.
[21]Dinaburg, E. I.. The relation between topological and metric entropy. Dokl. Akad. Nauk SSSR 190 (1970), 1316. Soviet Math. Dokl. 11 (1970).
[22]Dou, D., Huang, W. and Ye, X.. Null flows and null functions on R. J. Dynam. Differential Equations 18 (2006), 197221.
[23]Dou, D., Ye, X. and Zhang, G.. Entropy sequences and maximal entropy sets. Nonlinearity 19 (2006), 5374.
[24]van Dulst, D.. Characterization of Banach Spaces not Containing l 1. Centrum voor Wiskunde en Informatica, Amsterdam, 1989.
[25]Furstenberg, H.. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 149.
[26]Furstenberg, H.. Recurrence in Ergodic Theory and Combinatorial Number Theory (M. B. Porter Lectures). Princeton University Press, Princeton, NJ, 1981.
[27]Furstenberg, H. and Weiss, B.. On almost 1-1 extensions. Israel J. Math. 65 (1989), 311322.
[28]Franzová, N. and Smital, J.. Positive sequence topological entropy charaterizes chaotic maps. Proc. Amer. Math. Soc. 112 (1991), 10831086.
[29]Geller, W. and Misiurewicez, M.. Rotation and entropy. Trans. Amer. Math. Soc. 251 (1999), 29272984.
[30]Glasner, E.. A simple characterization of the set of μ-entropy pairs and applications. Israel J. Math. 192 (1997), 1327.
[31]Glasner, E.. Ergodic Theory via Joinings (Mathematical Surveys and Monographs, 101). American Mathematical Society, Providence, RI, 2003.
[32]Glasner, E.. Classifying dynamical systems by their recurrence properties. Topol. Methods Nonlinear Anal. 24 (2004), 2140.
[33]Glasner, E.. On tame dynamical systems. Colloq. Math. 105 (2006), 283295.
[34]Glasner, E.. The structure of tame minimal dynamical systems. Ergod. Th. & Dynam. Sys. 27 (2007), 18191837.
[35]Glasner, E.. Enveloping semigroups in topological dynamics. Topology Appl. 154 (2007), 23442363.
[36]Glasner, E. and Maon, D.. Rigidity in topological dynamics. Ergod. Th. & Dynam. Sys. 9 (1989), 309320.
[37]Glasner, E. and Megrelishvili, M.. Hereditarily non-sensitive dynamical systems and linear representations. Colloq. Math. 104 (2006), 223283.
[38]Glasner, E., Megrelishvili, M. and Uspenskij, V. V.. On metrizable enveloping semigroups. Israel J. Math. 164 (2008), 317332.
[39]Glasner, E. and Weiss, B.. Strictly ergodic uniform positive entropy models. Bull. Soc. Math. France 122 (1994), 399412.
[40]Glasner, E. and Weiss, B.. Quasi-factors of zero-entropy systems. J. Amer. Math. Soc. 8 (1995), 665686.
[41]Glasner, E. and Weiss, B.. Sensitive dependence on initial conditions. Nonlinearity 6 (1993), 10671075.
[42]Glasner, E. and Weiss, B.. Topological entropy of extensions. Ergodic Theory and its Connections with Harmonic Analysis. Cambridge University Press, Cambridge, 1995, pp. 299307.
[43]Glasner, E. and Weiss, B.. On the Interplay Between Measurable and Topological Dynamics (Handbook of Dynamical Systems, 1B). Eds. B. Hasselblatt and A. Katok. Elsevier, Amsterdam, 2006, pp. 597648.
[44]Goodman, T. N. T.. Relating topological entropy with measure theoretical entropy. Bull. London Math. Soc. 3 (1971), 176180.
[45]Goodman, T. N. T.. Topological sequence entropy. Proc. London Math. Soc. 29(3) (1974), 331350.
[46]Goodwyn, L. W.. Topological entropy bounds measure theoretical entropy. Proc. Amer. Math. Soc. 23 (1969), 679688.
[47]Huang, W.. Tame systems and scrambled pairs under an Abelian group action. Ergod. Th. & Dynam. Sys. 26 (2006), 15491567.
[48]Huang, W., Li, S., Shao, S. and Ye, X.. Null systems and sequence entropy pairs. Ergod. Th. & Dynam. Sys. 23 (2003), 15051523.
[49]Huang, W., Lu, P. and Ye, X.. Measure-theoretical sensitivity and equicontinuity. Preprint, 2007.
[50]Huang, W., Maass, A. and Ye, X.. Sequence entropy pairs and complexity pairs for a measure. Ann. Inst. Fourier (Grenoble) 54 (2004), 10051028.
[51]Huang, W., Maass, A., Romagnoli, P. and Ye, X.. Entropy pairs and a local Abramov formula for a measure theoretical entropy of open covers. Ergod. Th. & Dynam. Sys. 24 (2004), 11271153.
[52]Huang, W., Park, K. and Ye, X.. Dynamical systems disjoint from all minimal systems with zero entropy. Bull. Math. Soc. France, to appear.
[53]Huang, W., Shao, S. and Ye, X.. Mixing and proximal cells along sequences. Nonlinearity 17 (2004), 12451260.
[54]Huang, W., Shao, S. and Ye, X.. Mixing via sequence entropy. Contemp. Math. 385 (2005), 101122.
[55]Huang, W. and Ye, X.. An explicit scattering, non-weakly mixing example and weak disjointness. Nonlinearity 15 (2002), 114.
[56]Huang, W. and Ye, X.. Devaney’s chaos or 2-scattering implies Li–Yorke’s chaos. Topology Appl. 117 (2002), 259272.
[57]Huang, W. and Ye, X.. Topological complexity, return times and weak disjointness. Ergod. Th. & Dynam. Sys. 24 (2004), 825846.
[58]Huang, W. and Ye, X.. Dynamical systems disjoint from all minimal systems. Trans. Amer. Math. Soc. 357 (2005), 669694.
[59]Huang, W. and Ye, X.. A local variational relation and applications. Israel J. Math. 151 (2006), 237280.
[60]Huang, W. and Ye, X.. Combinatorial lemmas and applications. Preprint, 2006.
[61]Huang, W. and Yi, Y.. A local variational principle of presure and its applications to equilibrium states. Israel J. Math. 161 (2007), 2974.
[62]Huang, W., Ye, X. and Zhang, G. H.. Relative entropy tuples, relative u.p.e. and c.p.e. extensions. Israel. J. Math. 158 (2007), 249283.
[63]Huang, W., Ye, X. and Zhang, G. H.. A local variational principle for conditional entropy. Ergod. Th. & Dynam. Sys. 26 (2006), 219245.
[64]Huang, W., Ye, X. and Zhang, G. H.. Local entropy theory for countable discrete amenable group actions. Preprint, 2007.
[65]Hulse, P.. Sequence entropy and subsequence generators. J. London Math. Soc. 26 (1982), 441450.
[66]Kamae, T.. Maximal pattern complexity as a topological invariant. Preprint, 2002.
[67]Kamae, T. and Zamboni, L.. Sequence entropy and the maximal pattern complexity of infinite words. Ergod. Th. & Dynam. Sys. 22 (2002), 11911199.
[68]Kamae, T. and Zamboni, L.. Maximal pattern complexity for discrete systems. Ergod. Th. & Dynam. Sys. 22 (2002), 12011214.
[69]Kaminski, B., Siemaszko, A. and Szymanski, J.. The determinism and the Kolmogorov property in topological dynamics. Bull. Polish Acad. Sci. Math. 51 (2003), 401417.
[70]Kaminski, B., Siemaszko, A. and Szymanski, J.. Extreme relations for topological flows. Bull. Polish Acad. Sci. Math. 53 (2005), 1724.
[71]Karpovsky, M. G. and Milman, V. D.. Coordinate density of sets of vectors. Discrete Math. 24 (1978), 177184.
[72]Katok, A. B.. Lyapunov exponents, entropy and periodic points for diffeomorphisms. Publ. Math. Inst. Hautes Études Sci. 51 (1980), 137173.
[73]Kerr, D. and Li, H.. Dynamical entropy in Banach spaces. Invent. Math. 162 (2005), 649686.
[74]Kerr, D. and Li, H.. Independence in topological and C *-dynamics. Math. Ann. 338 (2007), 869926.
[75]Kerr, D. and Li, H.. Combinatorial independence in measurable dynamics, Preprint math.DS (math.FA). arXiv:0705.3424.
[76]Köhler, A.. Enveloping semigroups for flows. Proc. R. Irish Acad. 95A (1995), 179191.
[77]Kolmogorov, A. N.. A new metric invariant of transient dynamical systems and automorphisms of Lebesgue spaces. Dokl. Akad. Sci. SSSR. 119 (1958), 861864 (in Russian).
[78]Kuang, R. and Ye, X.. The return times set and mixing for mpt. Discrete. Contin. Dyn. Syst. 18 (2007), 817827.
[79]Kushnirenko, A. G.. On metric invariants of entropy type. Russian Math. Surveys 22(5) (1967), 5361.
[80]Lemanczyk, M. and Siemaszko, A.. A note on the existence of a largest topological factor with zero entropy. Proc. Amer. Math. Soc. 129 (2001), 475482.
[81]Maass, A. and Shao, S.. Structure of bounded topological-sequence-entropy minimal systems. J. London Math. Soc. (2) 76 (2007), 702718.
[82]Parry, W.. Entropy and Generators in Ergodic Theory. Benjamin, New York, 1969.
[83]Park, K. K. and Siemaszko, A.. Relative topological Pinsker factors and entropy pairs. Monatsh. Math. 134 (2001), 6779.
[84]Ornstein, D. S.. Bernoulli shifts with the same entropy are isomorphic. Adv. Math 4 (1970), 337352.
[85]Petersen, K.. Disjointness and weak mixing of minimal sets. Proc. Amer. Math. Soc. 24 (1970), 278280.
[86]Rohklin, V. A.. Lectures on ergodic theory. Russian Math. Surveys 22 (1967), 152.
[87]Rohklin, V. A. and Sinai, Ya. G.. Construction and properties of measurable partitions. Dokl. Akad. Nauk SSSR 141 (1961), 10381041 (in Russian).
[88]Romagnoli, P.. A local variational principle for the topological entropy. Ergod. Th. & Dynam. Sys. 23 (2003), 16011610.
[89]Rosenthal, H. P.. A characterization of Banach spaces containing 1. Proc. Natl. Acad. Sci. USA 71 (1974), 24112413.
[90]Saleski, A.. Sequence entropy and mixing. J. Math. Anal. Appl. 60 (1977), 5866.
[91]Sauer, N.. On the density of families of sets. J. Combin. Theory Ser. A 23 (1972), 145147.
[92]Shapira, U.. Measure theoretical entropy for covers. Israel J. Math 158 (2007), 225247.
[93]Shelah, S.. A combinatorial problem; stability and order for models and theories in infinitary languages. Pacific J. Math. 41 (1972), 247261.
[94]Shao, S., Ye, X. and Zhang, R.. Sensitivity and regionally proximal relation in minimal systems. Sci. China Ser. A 51 (2008), 987994.
[95]Song, B. and Ye, X.. Minimal c.p.e. not u.p.e. systems. J. Difference Equ. Appl. (a special issue on Combinatorial and Topological Dynamics), to appear.
[96]Todorc̆ević, S.. Topics in Topology (Lecture Notes in Mathematics, 1652). Springer, Berlin, 1997.
[97]Walters, P.. An Introduction to Ergodic Theory. Springer, New York, 1982.
[98]Weiss, B.. Proc. Conf. Honoring Dorothy Maharam Stone (Countable Generators in Dynamics—Universal Minimal Models) (Contemporary Mathematics, 94). American Mathematical Society, Providence, RI, 1989, pp. 321326.
[99]Weiss, B.. Strictly ergodic models for dynamical systems. Bull. Amer. Math. Soc. 13 (1985), 143146.
[100]Weiss, B.. Single Orbit Dynamics (Regional Conference Series in Mathematics, 95). American Mathematical Society, Providence, RI, 2000.
[101]Weiss, B.. Multiple recurrence and doubly minimal systems. Contemp. Math. 215 (1998), 189196.
[102]Xiong, J.. Chaos in topological transitive systems. Sci. China 48 (2005), 929939.
[103]Ye, X. and Zhang, G. H.. Entropy points and applications. Trans. Amer. Math. Soc. 359 (2007), 61676186.
[104]Ye, X. and Zhang, R. F.. On sensitive sets in topological dynamics. Nonlinearity, to appear.
[105]Zhang, G. H.. Relative entropy, asymptotic pairs and chaos. J. London Math. Soc. 73 (2006), 157172.
[106]Zhang, G. H.. Relativization of complexity and sensitivity. Ergod. Th. & Dynam. Sys. 27 (2007), 13491371.

Related content

Powered by UNSILO

Local entropy theory

  • ELI GLASNER (a1) and XIANGDONG YE (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.