[Ada94]
Adams, S.. Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups. Topology
33(4) (1994), 765–783.

[Ago13]
Agol, I.. The virtual Haken conjecture. Doc. Math.
18 (2013), 1045–1087, with an appendix by Agol, Daniel Groves and Jason Manning.

[BH99]
Bridson, M. R. and Haefliger, A.. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Vol. 319. Springer, Berlin, 1999.

[BW12]
Bergeron, N. and Wise, D. T.. A boundary criterion for cubulation. Amer. J. Math.
134(3) (2012), 843–859.

[CFW81]
Connes, A., Feldman, J. and Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam. Sys.
1(4) (1982), 431–450 1981.

[CM05]
Caprace, P.-E. and Mühlherr, B.. Reflection triangles in Coxeter groups and biautomaticity. J. Group Theory
8(4) (2005), 467–489.

[CM17]
Conley, C. and Miller, B.. Measure reducibility of countable borel equivalence relations. Ann. Math.
185(2) (2017), 347–402.

[DJK94]
Dougherty, R., Jackson, S. and Kechris, A. S.. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc.
341(1) (1994), 193–225.

[FM77]
Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc.
234(2) (1977), 289–324.

[Gao09]
Gao, S.. Invariant Descriptive Set Theory
*(Pure and Applied Mathematics (Boca Raton), 293)*
. CRC Press, Boca Raton, FL, 2009.

[GJ15]
Gao, S. and Jackson, S.. Countable abelian group actions and hyperfinite equivalence relations. Invent. Math.
201(1) (2015), 309–383.

[Gro87]
Gromov, M.. Hyperbolic groups. Essays in Group Theory
*(Mathematical Sciences Research Institute Publications, 8)*
. Springer, New York, 1987, pp. 75–263.

[HKL90]
Harrington, L. A., Kechris, A. S. and Louveau, A.. A Glimm–Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc.
3(4) (1990), 903–928.

[HW08]
Haglund, F. and Wise, D. T.. Special cube complexes. Geom. Funct. Anal.
17(5) (2008), 1551–1620.

[HW12]
Haglund, F. and Wise, D. T.. A combination theorem for special cube complexes. Ann. of Math. (2)
176(3) (2012), 1427–1482.

[HW15]
Hagen, M. F. and Wise, D. T.. Cubulating hyperbolic free-by-cyclic groups: the general case. Geom. Funct. Anal.
25(1) (2015), 134–179.

[HW16]
Hagen, M. F. and Wise, D. T.. Cubulating hyperbolic free-by-cyclic groups: the irreducible case. Duke Math. J.
165(9) (2016), 1753–1813.

[JKL02]
Jackson, S., Kechris, A. S. and Louveau, A.. Countable Borel equivalence relations. J. Math. Log.
2(1) (2002), 1–80.

[KB02]
Kapovich, I. and Benakli, N.. Boundaries of hyperbolic groups. Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001)
*(Contemporary Mathematics, 296)*
. American Mathematical Society, Providence, RI, 2002, pp. 39–93.

[Kec95]
Kechris, A. S.. Classical Descriptive Set Theory
*(Graduate Texts in Mathematics, 156)*
. Springer, New York, 1995.

[KM04]
Kechris, A. S. and Miller, B. D.. Topics in Orbit Equivalence
*(Lecture Notes in Mathematics, 1852)*
. Springer, Berlin, 2004.

[KM12]
Kahn, J. and Markovic, V.. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Ann. of Math. (2)
175(3) (2012), 1127–1190.

[NR97]
Niblo, G. and Reeves, L.. Groups acting on CAT(0) cube complexes. Geom. Topol.
1 (1997), 1–7.

[OW11]
Ollivier, Y. and Wise, D. T.. Cubulating random groups at density less than 1/6. Trans. Amer. Math. Soc.
363(9) (2011), 4701–4733.

[Sag95]
Sageev, M.. Ends of group pairs and non-positively curved cube complexes. Proc. Lond. Math. Soc.
3(3) (1995), 585–617.

[Sag14]
Sageev, M.. CAT(0) cube complexes and groups. Geometric Group Theory
*(IAS/Park City Mathematics Series, 21)*
. American Mathematical Society, Providence, RI, 2014, pp. 7–54.

[Tou18]
Touikan, N.. On geodesic ray bundles in hyperbolic groups. Proc. Amer. Math. Soc.
146 (2018), 4165–4173.

[Ver78]
Vershik, A. M.. The action of PSL(2, **Z**) in **R**
^{1} is approximable. UspekhiM at. Nauk
33(1(199)) (1978), 209–210.

[Wis04]
Wise, D. T.. Cubulating small cancellation groups. Geom. Funct. Anal.
14(1) (2004), 150–214.

[Wis17]
Wise, D.. *The Structure of Groups with a Quasiconvex Hierarchy*, in preparation, 2017.