Skip to main content Accessibility help

Hyperfiniteness of boundary actions of cubulated hyperbolic groups

  • JINGYIN HUANG (a1), MARCIN SABOK (a1) (a2) and FORTE SHINKO (a1)

We show that if a hyperbolic group acts geometrically on a CAT(0) cube complex, then the induced boundary action is hyperfinite. This means that for a cubulated hyperbolic group, the natural action on its Gromov boundary is hyperfinite, which generalizes an old result of Dougherty, Jackson and Kechris for the free group case.

Hide All
[Ada94] Adams, S.. Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups. Topology 33(4) (1994), 765783.
[Ago13] Agol, I.. The virtual Haken conjecture. Doc. Math. 18 (2013), 10451087, with an appendix by Agol, Daniel Groves and Jason Manning.
[BH99] Bridson, M. R. and Haefliger, A.. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Vol. 319. Springer, Berlin, 1999.
[BW12] Bergeron, N. and Wise, D. T.. A boundary criterion for cubulation. Amer. J. Math. 134(3) (2012), 843859.
[CFW81] Connes, A., Feldman, J. and Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam. Sys. 1(4) (1982), 431450 1981.
[CM05] Caprace, P.-E. and Mühlherr, B.. Reflection triangles in Coxeter groups and biautomaticity. J. Group Theory 8(4) (2005), 467489.
[CM17] Conley, C. and Miller, B.. Measure reducibility of countable borel equivalence relations. Ann. Math. 185(2) (2017), 347402.
[DJK94] Dougherty, R., Jackson, S. and Kechris, A. S.. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc. 341(1) (1994), 193225.
[FM77] Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc. 234(2) (1977), 289324.
[Gao09] Gao, S.. Invariant Descriptive Set Theory (Pure and Applied Mathematics (Boca Raton), 293) . CRC Press, Boca Raton, FL, 2009.
[GJ15] Gao, S. and Jackson, S.. Countable abelian group actions and hyperfinite equivalence relations. Invent. Math. 201(1) (2015), 309383.
[Gro87] Gromov, M.. Hyperbolic groups. Essays in Group Theory (Mathematical Sciences Research Institute Publications, 8) . Springer, New York, 1987, pp. 75263.
[HKL90] Harrington, L. A., Kechris, A. S. and Louveau, A.. A Glimm–Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc. 3(4) (1990), 903928.
[HW08] Haglund, F. and Wise, D. T.. Special cube complexes. Geom. Funct. Anal. 17(5) (2008), 15511620.
[HW12] Haglund, F. and Wise, D. T.. A combination theorem for special cube complexes. Ann. of Math. (2) 176(3) (2012), 14271482.
[HW15] Hagen, M. F. and Wise, D. T.. Cubulating hyperbolic free-by-cyclic groups: the general case. Geom. Funct. Anal. 25(1) (2015), 134179.
[HW16] Hagen, M. F. and Wise, D. T.. Cubulating hyperbolic free-by-cyclic groups: the irreducible case. Duke Math. J. 165(9) (2016), 17531813.
[JKL02] Jackson, S., Kechris, A. S. and Louveau, A.. Countable Borel equivalence relations. J. Math. Log. 2(1) (2002), 180.
[KB02] Kapovich, I. and Benakli, N.. Boundaries of hyperbolic groups. Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001) (Contemporary Mathematics, 296) . American Mathematical Society, Providence, RI, 2002, pp. 3993.
[Kec95] Kechris, A. S.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156) . Springer, New York, 1995.
[KM04] Kechris, A. S. and Miller, B. D.. Topics in Orbit Equivalence (Lecture Notes in Mathematics, 1852) . Springer, Berlin, 2004.
[KM12] Kahn, J. and Markovic, V.. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Ann. of Math. (2) 175(3) (2012), 11271190.
[Mar18] Marquis, T.. On geodesic ray bundles in buildings. Geom. Dedicata (2018), doi:10.1007/s10711-018-0401-y.
[NR97] Niblo, G. and Reeves, L.. Groups acting on CAT(0) cube complexes. Geom. Topol. 1 (1997), 17.
[OW11] Ollivier, Y. and Wise, D. T.. Cubulating random groups at density less than 1/6. Trans. Amer. Math. Soc. 363(9) (2011), 47014733.
[Sag95] Sageev, M.. Ends of group pairs and non-positively curved cube complexes. Proc. Lond. Math. Soc. 3(3) (1995), 585617.
[Sag14] Sageev, M.. CAT(0) cube complexes and groups. Geometric Group Theory (IAS/Park City Mathematics Series, 21) . American Mathematical Society, Providence, RI, 2014, pp. 754.
[Tou18] Touikan, N.. On geodesic ray bundles in hyperbolic groups. Proc. Amer. Math. Soc. 146 (2018), 41654173.
[Ver78] Vershik, A. M.. The action of PSL(2, Z) in R 1 is approximable. UspekhiM at. Nauk 33(1(199)) (1978), 209210.
[Wis04] Wise, D. T.. Cubulating small cancellation groups. Geom. Funct. Anal. 14(1) (2004), 150214.
[Wis17] Wise, D.. The Structure of Groups with a Quasiconvex Hierarchy, in preparation, 2017.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed