Skip to main content Accessibility help
×
×
Home

Hyperfiniteness of boundary actions of cubulated hyperbolic groups

  • JINGYIN HUANG (a1), MARCIN SABOK (a1) (a2) and FORTE SHINKO (a1)
Abstract

We show that if a hyperbolic group acts geometrically on a CAT(0) cube complex, then the induced boundary action is hyperfinite. This means that for a cubulated hyperbolic group, the natural action on its Gromov boundary is hyperfinite, which generalizes an old result of Dougherty, Jackson and Kechris for the free group case.

Copyright
References
Hide All
[Ada94] Adams, S.. Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups. Topology 33(4) (1994), 765783.
[Ago13] Agol, I.. The virtual Haken conjecture. Doc. Math. 18 (2013), 10451087, with an appendix by Agol, Daniel Groves and Jason Manning.
[BH99] Bridson, M. R. and Haefliger, A.. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Vol. 319. Springer, Berlin, 1999.
[BW12] Bergeron, N. and Wise, D. T.. A boundary criterion for cubulation. Amer. J. Math. 134(3) (2012), 843859.
[CFW81] Connes, A., Feldman, J. and Weiss, B.. An amenable equivalence relation is generated by a single transformation. Ergod. Th. & Dynam. Sys. 1(4) (1982), 431450 1981.
[CM05] Caprace, P.-E. and Mühlherr, B.. Reflection triangles in Coxeter groups and biautomaticity. J. Group Theory 8(4) (2005), 467489.
[CM17] Conley, C. and Miller, B.. Measure reducibility of countable borel equivalence relations. Ann. Math. 185(2) (2017), 347402.
[DJK94] Dougherty, R., Jackson, S. and Kechris, A. S.. The structure of hyperfinite Borel equivalence relations. Trans. Amer. Math. Soc. 341(1) (1994), 193225.
[FM77] Feldman, J. and Moore, C. C.. Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc. 234(2) (1977), 289324.
[Gao09] Gao, S.. Invariant Descriptive Set Theory (Pure and Applied Mathematics (Boca Raton), 293) . CRC Press, Boca Raton, FL, 2009.
[GJ15] Gao, S. and Jackson, S.. Countable abelian group actions and hyperfinite equivalence relations. Invent. Math. 201(1) (2015), 309383.
[Gro87] Gromov, M.. Hyperbolic groups. Essays in Group Theory (Mathematical Sciences Research Institute Publications, 8) . Springer, New York, 1987, pp. 75263.
[HKL90] Harrington, L. A., Kechris, A. S. and Louveau, A.. A Glimm–Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc. 3(4) (1990), 903928.
[HW08] Haglund, F. and Wise, D. T.. Special cube complexes. Geom. Funct. Anal. 17(5) (2008), 15511620.
[HW12] Haglund, F. and Wise, D. T.. A combination theorem for special cube complexes. Ann. of Math. (2) 176(3) (2012), 14271482.
[HW15] Hagen, M. F. and Wise, D. T.. Cubulating hyperbolic free-by-cyclic groups: the general case. Geom. Funct. Anal. 25(1) (2015), 134179.
[HW16] Hagen, M. F. and Wise, D. T.. Cubulating hyperbolic free-by-cyclic groups: the irreducible case. Duke Math. J. 165(9) (2016), 17531813.
[JKL02] Jackson, S., Kechris, A. S. and Louveau, A.. Countable Borel equivalence relations. J. Math. Log. 2(1) (2002), 180.
[KB02] Kapovich, I. and Benakli, N.. Boundaries of hyperbolic groups. Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001) (Contemporary Mathematics, 296) . American Mathematical Society, Providence, RI, 2002, pp. 3993.
[Kec95] Kechris, A. S.. Classical Descriptive Set Theory (Graduate Texts in Mathematics, 156) . Springer, New York, 1995.
[KM04] Kechris, A. S. and Miller, B. D.. Topics in Orbit Equivalence (Lecture Notes in Mathematics, 1852) . Springer, Berlin, 2004.
[KM12] Kahn, J. and Markovic, V.. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Ann. of Math. (2) 175(3) (2012), 11271190.
[Mar18] Marquis, T.. On geodesic ray bundles in buildings. Geom. Dedicata (2018), doi:10.1007/s10711-018-0401-y.
[NR97] Niblo, G. and Reeves, L.. Groups acting on CAT(0) cube complexes. Geom. Topol. 1 (1997), 17.
[OW11] Ollivier, Y. and Wise, D. T.. Cubulating random groups at density less than 1/6. Trans. Amer. Math. Soc. 363(9) (2011), 47014733.
[Sag95] Sageev, M.. Ends of group pairs and non-positively curved cube complexes. Proc. Lond. Math. Soc. 3(3) (1995), 585617.
[Sag14] Sageev, M.. CAT(0) cube complexes and groups. Geometric Group Theory (IAS/Park City Mathematics Series, 21) . American Mathematical Society, Providence, RI, 2014, pp. 754.
[Tou18] Touikan, N.. On geodesic ray bundles in hyperbolic groups. Proc. Amer. Math. Soc. 146 (2018), 41654173.
[Ver78] Vershik, A. M.. The action of PSL(2, Z) in R 1 is approximable. UspekhiM at. Nauk 33(1(199)) (1978), 209210.
[Wis04] Wise, D. T.. Cubulating small cancellation groups. Geom. Funct. Anal. 14(1) (2004), 150214.
[Wis17] Wise, D.. The Structure of Groups with a Quasiconvex Hierarchy, in preparation, 2017.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed