Published online by Cambridge University Press: 02 April 2001
Let $\mu$ be a probability measure on a locally compact group $G$, and suppose $G$ acts measurably on a probability measure space $(X,m)$, preserving the measure $m$. We study ergodic theoretic properties of the action along $\mu$-i.i.d. random walks on $G$. It is shown that under a (necessary) spectral assumption on the $\mu$-averaging operator on $L^2(X,m)$, almost surely the mean and the pointwise (Kakutani's) random ergodic theorems have roughly $n^{-1/2}$ rate of convergence. We also prove a central limit theorem for the pointwise convergence. Under a similar spectral condition on the diagonal $G$-action on $(X\times X,m\times m)$, an almost surely exponential rate of mixing along random walks is obtained.
The imposed spectral condition is shown to be connected to a strengthening of the ergodicity property, namely, the uniqueness of $m$-integration as a $G$-invariant mean on $L^\infty(X,m)$. These related conditions, as well as the presented sharp ergodic theorems, never occur for amenable $G$. Nevertheless, we provide many natural examples, among them automorphism actions on tori and actions on Lie groups' homogeneous spaces, for which our results can be applied.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 16th January 2021. This data will be updated every 24 hours.