Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-26T20:05:26.038Z Has data issue: false hasContentIssue false

Rigidity for non-compact surfaces of finite area and certain Kähler manifolds

Published online by Cambridge University Press:  19 September 2008

Jianguo Cao
Affiliation:
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA (cao@math.Cornell.edu)

Abstract

We first consider the rigidity of the marked length spectrum for non-compact surfaces of finite area.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Ah]Ahlfors, L.. An extension of Schwarz's lemma. Trans. Amer. Math. Soc. 43 (1938), 359364.Google Scholar
[Ba]Ballmann, W.. Axial isometries of manifolds of nonpositive curvature. Math. Ann. 259 (1982), 133144.CrossRefGoogle Scholar
[BGS]Ballmann, W., Gromov, M. and Schroeder, V.. Manifolds of Non-positive Curvature. Birkhaüser: Boston—Basel—Stüttgart, 1985.CrossRefGoogle Scholar
[Be1]Besse, A.. Manifolds All of Whose Geodesies are Closed. Springer: Berlin—Heidelberg—New York, 1978.CrossRefGoogle Scholar
[Be2]Besse, A.. Einstein Manifolds. Springer: Verlag, Berlin—Heidelberg—New York, 1987.CrossRefGoogle Scholar
[Br]Brooks, R.. The fundamental group and the spectrum of the Laplacian. Comm. Math. Helv. 56 (1981), 581598.CrossRefGoogle Scholar
[Bo]Bonahon, F.. The geometry of Teichmuller space via geodesic currents Invent. Math. 92 (1988), 139162.CrossRefGoogle Scholar
[BK]Burns, K. and Katok, A.. Manifolds with non-positive curvature. Ergod. Th. & Dynam. Sys. 5 (1985), 307317.CrossRefGoogle Scholar
[Bu]Buser, P.. A note on the isoperimetric constant. Ann. Scient. Éc. Norm. Sup. 4⊃e série 16 (1985), 213230.Google Scholar
[CaT]Carlson, J. A. and Toledo, D.. Harmonic mappings of Kähler manifolds to locally symmetric spaces. Publ. IHES 69 (1989), 173201.CrossRefGoogle Scholar
[Ch]Cheeger, J.. A Lower Bound for the Smallest Eigenvalue of the Laplacian. In Gunning, R., ed. Problems in Analysis. (A Symposium in honor ofS. Böchner). Princeton University Press: Princeton, 1970. pp. 195199.Google Scholar
[CE]Cheeger, J. and Ebin, D.. Comparison Theorems in Riemannian Geometry. North Holland: Amsterdam, 1975.Google Scholar
[Cn]Cheng, S. Y.. Eigenvalue comparison theorems and its applications. Math. Z. 143 (1975), 289297.CrossRefGoogle Scholar
[CDP]Coornaet, M., Delzant, T. and Papadopoulos, A.. Géométrie et théorie des groupes. Les Groupes Hyperboliques de Gromov. Springer Lecture Notes in Mathematics 1441. Springer: Berlin, 1990.Google Scholar
[Cr]Croke, C.. Rigidity for surfaces of non-positive curvature. Comm. Math. Helv. 65 (1990), 150169.CrossRefGoogle Scholar
[CFF]Croke, C., Fathi, A. and Feldman, J.. The marked length-spectrum of a surface of non-positive curvature. Topology 31 (1992), 847855.CrossRefGoogle Scholar
[DR]Damek, E. and Ricci, F.. A class of non-symmetric harmonic Riemannian spaces. Bull. Amer. Math. Soc. 27 (1992), 139142.CrossRefGoogle Scholar
[DoC]DoCarmo, M. P.. Differential Geometry of Curves and Surfaces. Prentice-Hall: (1976).Google Scholar
[E1]Eberlein, P.. Lattice in spaces of non-positive curvature. Ann. Math. 111 (1980), 435476.CrossRefGoogle Scholar
[E2]Eberlein, P.. Geodesic flow in certain manifolds without conjugate points. Trans. Amer. Math. Soc. 167 (1972), 151170.CrossRefGoogle Scholar
[E3]Eberlein, P.. Surfaces of non-positive curvature. Mem. Amer. Math. Soc. 218 (1979).Google Scholar
[E4]Eberlein, P.. Geodesic rigidity in compact non-positively curved manifolds. Trans. Amer. Math. Soc. 268 (1981), 411443.CrossRefGoogle Scholar
[E5]Eberlein, P.. Geodesic flows on negatively curved manifolds 1. Ann. Math. 95 (1972), 492510.CrossRefGoogle Scholar
[EO]Eberlein, P. and O'Neill, B.. Visibility manifolds. Pacific J. Math. 46 (1973), 45109.CrossRefGoogle Scholar
[ES]Eells, J. and Sampson, J. H.. Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964), 109160.CrossRefGoogle Scholar
[Fa]Fathi, A.. Le spectre marqué des longueurs des surfaces sans points conjugués. C. R. Acad. Sci. Paris, Sér 1. Math. 309 (1989), 621624.Google Scholar
[FJ]Farrell, T. and Jones, L.. Compact negatively curved manifolds (of dim ≠ 3, 4) are topologically rigid. Proc. Nat. Acad. Sci.. 86 (1989), 34613463.CrossRefGoogle ScholarPubMed
[FO]Feldman, J. and Ornstein, D.. Semi—rigidity of horocycle flows over surfaces of variable negative curvature. Ergod. Th. & Dynam. Sys. 7 (1987), 4972.CrossRefGoogle Scholar
[FL]Foulon, P. and Labourie, F.. Sur les variétes compactes asymptotiquement harmoniques. Invent. Math. 109 (1991), 97112.CrossRefGoogle Scholar
[Gr1]Gromov, M.. Three remarks on geodesic dynamic and fundamental groups info SUNY at Stony Brook. Preprint. (1976).Google Scholar
[Gr2]Gromov, M.. Manifolds of negative curvature. J. Diff. Geom. 13 (1978), 223230.Google Scholar
[Gr3]Gromov, M.. Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82 (1985), 307347.CrossRefGoogle Scholar
[Gr4]Gromov, M.. Hyperbolic Groups. In Gersten, M., eds. Essays in Group Theory. MSRI Series. Vol. 8. Springer: Berlin, 1987. pp. 75265.CrossRefGoogle Scholar
[Gr5]Gromov, M.. Hyperbolic manifolds, groups and actions. In Kra, I. and Maskit, B., eds. Riemannian Surfaces and Related Topics. Annals of Mathematics Studies 97. Princeton University Press: Princeton, 1981. pp. 183213.CrossRefGoogle Scholar
[Gr6]Gromov, M.. Hyperbolic Manifolds According to Thurston and Jorgensen. In Seminarie Bourbaki, 32 e annee. No. 546. (1979/1980), pp. 4053.Google Scholar
[GK]Guillemin, V. and Kazhdan, D.. Some inverse spectral results for negatively curved 2-manifolds. Topology 19 (1980), 301312.CrossRefGoogle Scholar
[Ha]Hamenstädt, U.. Time preserving conjugacies of geodesic flows. Ergod. Th. & Dynam. Sys. 12 (1992), 6774.CrossRefGoogle Scholar
[Ka]Katok, A.. Four applications of conformal equivalence to geometry and dynamics. Ergod. Th. & Dynam. Sys. 8* (1988), 139152.Google Scholar
[Min]Min-Oo, M.. Spectral rigidity for manifolds with negative curvature operator. Contemp. Math., Nonlinear Problem in Geometry. 51 (1986), 99103.Google Scholar
[Mo]Morse, M.. A fundamental class of geodesies on any closed surface of genus greater than one. Trans. Amer. Math. Soc. 26 (1924), 2560.CrossRefGoogle Scholar
[Mu]Müller, W.. Spectral geometry and scattering theory for certain complete surfaces of finite volume. Invent. Math. 109 (1992), 265305.CrossRefGoogle Scholar
[N]Nevanlinna, R.. Analytic Functions. Springer: Berlin, Heidelberg, 1970.CrossRefGoogle Scholar
[Ot1]Otal, J. P.. Le spectre marqué des longueurs des surfaces á courbure negative. Ann. Math. 131 (1990), 151162.CrossRefGoogle Scholar
[Ot2]Otal, J. P.. Sur les longueurs des geodésiques dune metrique á courbure negative dans le disque. Comm. Math. Helv. 65 (1990), 334347.CrossRefGoogle Scholar
[Pa]Pansu, P.. Quasi—conformal mappings and manifolds of negative curvature. Springer Lecture Notes in Mathematics 1201. 212–229.CrossRefGoogle Scholar
[Sa]Santaló, L. A.. Integral Geometry and Geometric Probability. Addison—Wesley: 1976.Google Scholar
[Sh]Short, H.. Notes on word hyperbolic groups. In Ghys, E., Haefliger, A. and Verjovsky, A., eds. Group Theory from a Geometrical Viewpoint. World Scientific: Singapore, Teaneck, New Jersey, 1991.Google Scholar
[Si]Siu, Y. T.. The complex-analyticity of harmonic maps and strong rigidity of compact Kahler manifolds. Ann. Math. 112 (1980), 73111.CrossRefGoogle Scholar
[Sz]Szabo, Z. I.. Harmonic manifolds, The proof of the Lichnerowicz conjecture in compact case. J. Diff. Geom. 31 (1990), 128.Google Scholar
[Ya]Yang, C. T.. Any Blaschke manifold of homotopy type of ℂPn has the right volume. Pacific Math. J. 151 (1991), 379394.CrossRefGoogle Scholar
[Y1]Yau, S. T.. A general Schwarz Lemma for Kähler manifolds. Amer. J. Math. 100 (1978), 197203.CrossRefGoogle Scholar
[Y2]Yau, S. T.. Isoperimetric constants and the first eigenvalues of a compact Riemannian manifold. Ann. Sci. Éc. Norm. Sup. 13 (1975), 487507.CrossRefGoogle Scholar
[Y3]Yau, S. T.. Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. 74 (1977), 17981799.CrossRefGoogle ScholarPubMed
[We]Weil, A.. Sur les surfaces a curbure negative. C. R. Acad. Sci. 182 (1926), 10691072.Google Scholar
[Wo]Wolpert, S.. The length spectra as moduli for compact Riemann surfaces. Ann. Math. 109 (1979), 323351.CrossRefGoogle Scholar