Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T12:36:54.660Z Has data issue: false hasContentIssue false

On t-conformal measures and Hausdorff dimension for a family of non-uniformly hyperbolic horseshoes

Published online by Cambridge University Press:  02 March 2009

RENAUD LEPLAIDEUR
Affiliation:
Laboratoire de Mathématiques, UMR 6205, Université de Bretagne Occidentale, 6 rue Victor Le Gorgeu BP 809 F-29285 BREST, Cedex, France (email: Renaud.Leplaideur@univ-brest.fr)
ISABEL RIOS
Affiliation:
Instituto de Matemática, Universidade Federal Fluminense, Rua Mário Santos Braga s/n, Niterói, RJ, 24.020-140, Brasil (email: rios@mat.uff.br)

Abstract

In this paper we consider horseshoes with homoclinic tangencies inside the limit set. For a class of such maps, we prove the existence of a unique equilibrium state μt, associated to the (non-continuous) potential −tlog Ju. We also prove that the Hausdorff dimension of the limit set, in any open piece of unstable manifold, is the unique number t0 such that the pressure of μt0 is zero. To deal with the discontinuity of the jacobian, we introduce a countable Markov partition adapted to the dynamics, and work with the first return map defined in a rectangle of it.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baladi, V.. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16). World Scientific, Singapore, 2000.CrossRefGoogle Scholar
[2]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (Lecture Notes in Mathematics, 470). Springer, Berlin, 1975.Google Scholar
[3]Boyle, M., Buzzi, J. and Gómez, R.. Almost isomorphism for countable state Markov shifts. J. Reine Angew. Math. 592 (2006), 2347.Google Scholar
[4]Bruin, H. and Keller, G.. Equilibrium states for S-unimodal maps. Ergod. Th. & Dynam. Sys. 18(4) (1998), 765789.CrossRefGoogle Scholar
[5]Cao, Y., Luzzatto, S. and Rios, I.. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: horseshoes with internal tangencies. Discrete Contin. Dyn. Syst. 15(1) (2006), 6171.Google Scholar
[6]Chazottes, J.-R. and Leplaideur, R.. Fluctuations of the Nth return time for Axiom A diffeomorphisms. Discrete Contin. Dyn. Syst. 13(2) (2005), 399411.Google Scholar
[7]Denker, M., Nitecki, Z. and Urbański, M.. Conformal measures and S-unimodal maps. Dynamical Systems and Applications (World Scientific Series in Applicable Analysis, 4). World Science, River Edge, NJ, 1995, pp. 169212.Google Scholar
[8]Denker, M. and Urbański, M.. Hausdorff and conformal measures on Julia sets with a rationally indifferent periodic point. J. London Math. Soc. (2) 43(1) (1991), 107118.Google Scholar
[9]Dowker, Y.. Finite and σ-finite invariant measures. Ann. of Math. (2) 54(3) (1951), 595608.Google Scholar
[10]Hennion, H. and Hervé, L.. Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-compactness (Lecture Notes in Mathematics, 1766). Springer, Berlin, 2001.Google Scholar
[11]Ionescu Tulcea, C. T. and Marinescu, G.. Théorie ergodique pour des classes d’opérations non complètement continues. Ann. of Math. (2) 52(1) (1950), 140147.Google Scholar
[12]Kato, T.. Perturbation Theory for Linear Operators (Die Grundlehren der Mathematischen Wissenschaften, Band 132). Springer, New York, 1966.Google Scholar
[13]Katok, A. and Hasselblatt, B.. Introduction to the Modern Theory of Dynamical Systems (Encyclopedia of Mathematics and its Applications). Cambridge University Press, Cambridge, 1995.Google Scholar
[14]Ledrappier, F. and Young, L.-S.. The metric entropy of diffeomorphisms Part I: Characterization of measures satisfying Pesin’s entropy formula. Ann. of Math. (2) 122 (1985), 509539.Google Scholar
[15]Leplaideur, R.. Structure locale produit de mesures hyperboliques. PhD Thesis, Université Paris-Sud, 1997.Google Scholar
[16]Leplaideur, R.. Local product structure for equilibrium states. Trans. Amer. Math. Soc. 352(4) (2000), 18891912.CrossRefGoogle Scholar
[17]Leplaideur, R.. A dynamical proof for the convergence of Gibbs measures at temperature zero. Nonlinearity 18(6) (2005), 28472880.Google Scholar
[18]Leplaideur, R. and Rios, I.. Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes. Nonlinearity 19 (2006), 26672694.CrossRefGoogle Scholar
[19]Makarov, N. and Smirnov, S.. On thermodynamics of rational maps. II. Non-recurrent maps. J. London Math. Soc. (2) 67(2) (2003), 417432.Google Scholar
[20]McCluskey, H. and Manning, A.. Hausdorff dimension for horseshoes. Ergod. Th. & Dynam. Sys. 3 (1983), 251260.Google Scholar
[21]Palis, J. and Yoccoz, J.-C.. Non-uniformly hyperbolic horseshoes arising from bifurcations of Poincaré heteroclinic cycles. Unpublished.Google Scholar
[22]Parry, W.. Entropy and generators in ergodic theory. Mathematics Lectures Notes Series. Benjamin, New York, 1969.Google Scholar
[23]Pesin, Y. and Senti, S.. Thermodynamical formalism associated with inducing schemes for one-dimensional maps. Mosc. Math. J. 5(3) (2005), 669–678, 743–744.Google Scholar
[24]Range, R. M.. Holomorphic Functions and Integral Representations on Several Complex Variables. Springer, Berlin, 1986.CrossRefGoogle Scholar
[25]Rios, I.. Unfolding homoclinic tangencies inside horseshoes: hyperbolicity, fractal dimensions and persistent tangencies. Nonlinearity 14 (2001), 431462.CrossRefGoogle Scholar
[26]Rohlin, V. A.. On the fundamental ideas of measure theory. Amer. Math. Soc. Transl. 10(1) (1962), 152.Google Scholar
[27]Ruelle, D.. A measure associated with Axiom A attractors. Amer. J. Math. 98 (1976), 619654.Google Scholar
[28]Sinai, Ya.. Gibbs measures in ergodic theory. Russian Math. Surveys 27 (1972), 2169.Google Scholar