Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-05T23:35:40.745Z Has data issue: false hasContentIssue false

Finite beta-expansions

Published online by Cambridge University Press:  19 September 2008

Christiane Frougny
Affiliation:
Université Paris 8 and Laboratoire Informatique Théorique et Programmation, Institut Blaise Pascal, 4 place Jussieu, 75252 Paris Cedex 05, France
Boris Solomyak
Affiliation:
Department of Mathematics GN-50, University of Washington, Seattle, Washington 98195, USA

Abstract

We characterize numbers having finite β-expansions where β belongs to a certain class of Pisot numbers: when the β-expansion of 1 is equal to a1a2am, where a1a2≥…≥am≥1 and when the β-expansion of 1 is equal to t1t2tm(tm+1)ω where t1≥t2≥…≥tm>tm+1≥1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[Be]Bertrand, A.. Développements en base de Pisot et répartition modulo 1. C.R. Acad. Sci., Paris 285 (1977), 419421.Google Scholar
[B1]Blanchard, F.. β-expansions and symbolic dynamics. Theor. Comp. Sci. 65 (1989), 131141.CrossRefGoogle Scholar
[B0]Boyd, D.. Salem numbers of degree four have periodic expansions. Number Theory, eds., de Coninck, J. H. and Levesque, C.. Walter de Gruyter, 1989, pp 5764.Google Scholar
[Br]Brauer, A.. On algebraic equations with all but one root in the interior of the unit circle. Math. Nachr. 4 (1951), 250257.CrossRefGoogle Scholar
[Fra]Fraenkel, A. S.. Systems of numeration. Amer. Math. Monthly 92(2) (1985), 105114.CrossRefGoogle Scholar
[Fr1]Frougny, Ch.. Representations of numbers and finite automata. Math. Systems Theory 25 (1992). 3760.CrossRefGoogle Scholar
[Fr2]Frougny, Ch.. How to write integers in non-integer base. LATIN 92, Saõ Paulo. Springer Lecture Notes in Computer Science 583 (1992), 154164.CrossRefGoogle Scholar
[H]Handelman, D.. Spectral radii of primitive integral companion matrices. Contemp. Math. (1992).CrossRefGoogle Scholar
[P]Parry, W.. On the β-expansions of real numbers. Acta Math. Acad. Sci. Hungary 11 (1960), 401416.CrossRefGoogle Scholar
[PT]Pethö, A. & Tichy, R.. On digit expansions with respect to linear recurrences. J. Number Theory 33 (1989), 243256.CrossRefGoogle Scholar
[Pr]Praggastis, B.. University of Washington. PhD Thesis (1992).Google Scholar
[Q]Queffélec, M.. Substitution dynamical systems—spectral analysis. Springer Lecture Notes in Mathematics 1294 (1987).CrossRefGoogle Scholar
[R]Rényi, A.. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungary 8 (1957), 477493.CrossRefGoogle Scholar
[S]Schmidt, K.. On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980), 269278.CrossRefGoogle Scholar
[Sa]Salem, R.. Algebraic Numbers and Fourier Analysis. D. C. Heath & Co.: Boston, 1963.Google Scholar
[Se]Seneta, E.. Non-negative Matrices. An Introduction to Theory and Applications. G. Allen & Unwin, London, 1973.Google Scholar
[So1]Solomyak, B.. Finite β-expansions and spectra of substitutions. Preprint, 1991.Google Scholar
[So2]Solomyak, B.. Substitutions, adic transformations, and beta-expansions. Contemp. Math. (1992).CrossRefGoogle Scholar
[T]Thurston, W.. Groups, tilings, and finite state automata. AMS Colloquium Lecture Notes, Boulder, 1989.Google Scholar