We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To send this article to your account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about sending content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about sending to your Kindle.
Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Environmental poliovirus surveillance (ENV) means monitoring of poliovirus (PV) transmission in human populations by examining environmental specimens supposedly contaminated by human faeces. The rationale is based on the fact that PV-infected individuals, whether presenting with disease symptoms or not, shed large amounts of PV in the faeces for several weeks. As the morbidity:infection ratio of PV infection is very low, this fact contributes to the sensitivity of ENV which under optimal conditions can be better than that of the standard acute flaccid paralysis (AFP) surveillance. The World Health Organization has included ENV in the new Strategic Plan of the Global Polio Eradication Initiative for years 2010–2012 to be increasingly used in PV surveillance, supplementing AFP surveillance. In this paper we review the feasibility of using ENV to monitor wild PV and vaccine-derived PV circulation in human populations, based on global experiences in defined epidemiological situations.
Disease surveillance programmes ought to be evaluated regularly to ensure they provide valuable information in an efficient manner. Evaluation of human and animal health surveillance programmes around the world is currently not standardized and therefore inconsistent. The aim of this systematic review was to review surveillance system attributes and the methods used for their assessment, together with the strengths and weaknesses of existing frameworks for evaluating surveillance in animal health, public health and allied disciplines. Information from 99 articles describing the evaluation of 101 surveillance systems was examined. A wide range of approaches for assessing 23 different system attributes was identified although most evaluations addressed only one or two attributes and comprehensive evaluations were uncommon. Surveillance objectives were often not stated in the articles reviewed and so the reasons for choosing certain attributes for assessment were not always apparent. This has the potential to introduce misleading results in surveillance evaluation. Due to the wide range of system attributes that may be assessed, methods should be explored which collapse these down into a small number of grouped characteristics by focusing on the relationships between attributes and their links to the objectives of the surveillance system and the evaluation. A generic and comprehensive evaluation framework could then be developed consisting of a limited number of common attributes together with several sets of secondary attributes which could be selected depending on the disease or range of diseases under surveillance and the purpose of the surveillance. Economic evaluation should be an integral part of the surveillance evaluation process. This would provide a significant benefit to decision-makers who often need to make choices based on limited or diminishing resources.
Salmonella is an important cause of human illness. Disease is frequently associated with foodborne transmission, but other routes of exposure are recognized. Identifying sources of disease is essential for prioritizing public health interventions. Numerous case-control studies of sporadic salmonellosis have been published, often using different methodologies and settings. Systematic reviews consist of a formal process for literature review focused on a research question. With the objective of identifying the most important risk factors for salmonellosis, we performed a systematic review of case-control studies and a meta-analysis of obtained results. Thirty-five Salmonella case-control studies were identified. In the meta-analysis, heterogeneity between studies and possible sources of bias were investigated, and pooled odds ratios estimated. Results suggested that travel, predisposing factors, eating raw eggs, and eating in restaurants were the most important risk factors for salmonellosis. Sub-analyses by serotype were performed when enough studies were available.
Surveillance of newly acquired hepatitis C virus (HCV) infection is crucial for understanding the epidemiology of HCV and informing public health practice. However, monitoring such infections via surveillance systems is challenging because they are commonly asymptomatic. A literature review was conducted to identify methodologies used by HCV surveillance systems to identify newly acquired infections; relevant surveillance systems in 15 countries were identified. Surveillance systems used three main strategies to identify newly acquired infections: (1) asking physicians to classify cases; (2) identifying symptomatic cases or cases with elevated alanine aminotransferases; and (3) identifying cases with documented evidence of anti-HCV antibody seroconversion within a specific time-frame. Case-ascertainment methods varied with greater completeness of data in enhanced compared to passive surveillance systems. Automated systems that extract and link testing data from multiple laboratory and clinic databases may provide an opportunity for collecting testing histories for individuals that is less resource intensive than enhanced surveillance.
The purpose of this study was to review documented outbreaks of enteric illness associated with nosocomial norovirus infections and to identify modes of transmission, morbidity and mortality patterns, and recommendations for control. Searches of electronic databases, public health publications, and federal, state/provincial public health websites were completed for 1 January 2000 to 31 December 2010. Computer-aided searches of literature databases and systematic searches of government websites identified 54 relevant outbreak reports. Transmission routes included person-to-person (18·5%), foodborne (3·7%) and in the majority (77·8%) the route was unknown. Actions taken during the outbreak to control infection included restricting the movements of patients and staff (22·5%), enhanced environmental cleaning (13·6%) and hand hygiene (10·3%). Rapid identification of norovirus outbreaks in hospitals is vital for the immediate implementation of infection control measures and isolation of infected individuals in this mainly immunocompromised population. Studies that statistically evaluate infection control measures are needed.
Space–time clustering of people who fall acutely ill with jaundice, then slip into coma and death, is an alarming phenomenon, more markedly so when the victims are mostly or exclusively pregnant. Documentation of the peculiar, fatal predisposition of pregnant women during outbreaks of jaundice identifies hepatitis E and enables construction of its epidemic history. Between the last decade of the 18th century and the early decades of the 20th century, hepatitis E-like outbreaks were reported mainly from Western Europe and several of its colonies. During the latter half of the 20th century, reports of these epidemics, including those that became serologically confirmed as hepatitis E, emanated from, first, the eastern and southern Mediterranean littoral and, thereafter, Southern and Central Asia, Eastern Europe, and the rest of Africa. The dispersal has been accompanied by a trend towards more frequent and larger-scale occurrences. Epidemic and endemic hepatitis E still beset people inhabiting Asia and Africa, especially pregnant women and their fetuses and infants. Their relief necessitates not only accelerated access to potable water and sanitation but also vaccination against hepatitis E.
Deaths in England attributable to pandemic (H1N1) 2009 deaths were investigated through a mandatory reporting system. The pandemic came in two waves. The second caused greater population mortality than the first (5·4 vs. 1·6 deaths per million, P<0·001). Mortality was particularly high in those with chronic neurological disease, chronic heart disease and immune suppression (450, 100, and 94 deaths per million, respectively); significantly higher than in those with chronic respiratory disease (39 per million) and those with no risk factors (2·4 per million). Greater mortality in the second wave has been observed in all previous influenza pandemics. This time, the explanation appears to be behavioural. This emphasizes the importance of maintaining public and clinical awareness of risks associated with pandemic influenza beyond the initial high-profile period.
The prevalence and risk factors associated with livestock-associated MRSA (LA-MRSA) carriage was examined in Danish and Belgian veterinarians. The MRSA and LA-MRSA carriage rates were 9·5% (95% CI 5·3–15·6) and 7·5% (95% CI 3·8–13·1) for MRSA and LA-MRSA, respectively, in Belgium and 1·4% (95% CI: 0·17–5·05) in Denmark (all Danish MRSA isolates belonged to the LA-MRSA genotype). All LA-MRSA isolates were resistant to tetracycline and 53·4% (7/13) showed a multi-resistant phenotype. LA-MRSA was significantly associated with veterinarians in contact with livestock (P=0·046). In the multivariable analysis, working with small animals in a veterinary clinic seems to be negatively associated (OR 0·15, 95% CI 0–1·0, P=0·05) and a strong direct association was found for LA-MRSA acquisition and exposure to live pigs (OR 12·1, 95% CI 1·6–548·5, P=0·01). Since carriage of MRSA ST398 may increase the risk of complications during hospitalization, our results underline that preventive measures may need to be developed for veterinary professionals, particularly for livestock veterinarians.
Global coverage of infant Haemophilus influenzae type b (Hib) vaccination has increased considerably during the past decade, partly due to GAVI Alliance donations of the vaccine to low-income countries. In settings where large numbers of children receive only one or two vaccine doses rather than the recommended three doses, dose-specific efficacy estimates are needed to predict impact. The objective of this meta-analysis is to determine Hib vaccine efficacy against different clinical outcomes after receiving one, two or three doses of vaccine. Studies were eligible for inclusion if a prospective, controlled design had been used to evaluate commercially available Hib conjugate vaccines. Eight studies were included. Pooled vaccine efficacies against invasive Hib disease after one, two or three doses of vaccine were 59%, 92% and 93%, respectively. The meta-analysis provides robust estimates for use in decision-analytical models designed to predict the impact of Hib vaccine.
A central tenet of close-contact or respiratory infection epidemiology is that infection patterns within human populations are related to underlying patterns of social interaction. Until recently, few researchers had attempted to quantify potentially infectious encounters made between people. Now, however, several studies have quantified social mixing behaviour, using a variety of methods. Here, we review the methodologies employed, suggest other appropriate methods and technologies, and outline future research challenges for this rapidly advancing field of research.
During 2007–2009 a UK-wide, 3-year stratified randomized survey of UK chicken broiler flocks was conducted to estimate the prevalence of Campylobacter-infected batches of birds at slaughter. Thirty-seven abattoirs, processing 88·3% of the total UK slaughter throughput, were recruited at the beginning of the survey. Of the 1174 slaughter batches sampled, 79·2% were found to be colonized with Campylobacter, the majority of isolates being C. jejuni. Previous partial depopulation of the flock [odds ratio (OR) 5·21], slaughter in the summer months (categorized as June, July and August; OR 14·27) or autumn months (categorized as September, October and November; OR 1·70) increasing bird age (40–41 days, OR 3·18; 42–45 days, OR 3·56; ⩾46 days, OR 13·43) and higher recent mortality level in the flock (1·00–1·49% mortality, OR 1·57; ⩾1·49% mortality, OR 2·74) were all identified as significant risk factors for Campylobacter colonization of the birds at slaughter. Time in transit to the slaughterhouse of more than 2·5 h was identified as a protective factor (OR 0·52).
The purpose of this study was to examine global epidemiological trends in human norovirus (NoV) outbreaks by transmission route and setting, and describe relationships between these characteristics, viral attack rates, and the occurrence of genogroup I (GI) or genogroup II (GII) strains in outbreaks. We analysed data from 902 reverse transcriptase–polymerase chain reaction-confirmed, human NoV outbreaks abstracted from a systematic review of articles published from 1993 to 2011 and indexed under the terms ‘norovirus’ and ‘outbreak’. Multivariate regression analyses demonstrated that foodservice and winter outbreaks were significantly associated with higher attack rates. Foodborne and waterborne outbreaks were associated with multiple strains (GI+GII). Waterborne outbreaks were significantly associated with GI strains, while healthcare-related and winter outbreaks were associated with GII strains. These results identify important trends for epidemic NoV detection, prevention, and control.
Reliable estimates of the burden of 2009 pandemic influenza A(pH1N1) cannot be easily obtained because only a small fraction of infections were confirmed by laboratory tests in a timely manner. In this study we developed a Poisson prediction modelling approach to estimate the excess mortality associated with pH1N1 in 2009 and seasonal influenza in 1998–2008 in the subtropical city Hong Kong. The results suggested that there were 127 all-cause excess deaths associated with pH1N1, including 115 with cardiovascular and respiratory disease, and 22 with pneumonia and influenza. The excess mortality rates associated with pH1N1 were highest in the population aged ⩾65 years. The mortality burden of influenza during the whole of 2009 was comparable to those in the preceding ten inter-pandemic years. The estimates of excess deaths were more than twofold higher than the reported fatal cases with laboratory-confirmed pH1N1 infection.
Following a resurgence of fox rabies in northeastern Italy in 2008–2009, two emergency oral rabies vaccination (ORV) campaigns were performed in the Alpine mountain ranges in 2009 and 2010 using aerial distribution to prevent the disease from spreading further inland. Vaccine baits were distributed only below the freezing point altitude, 1000 m above sea level (a.s.l.) in December 2009–January 2010 and 1500 m a.s.l. in April–May 2010, to avoid repeated freeze–thaw cycles. Spatial analysis unexpectedly identified fox rabies hotspots above the threshold altitudes, probably representing local residual rabies foci which may have contributed to maintaining the infectious cycle in areas not vaccinated at higher altitudes. Based on the results obtained, in May 2010, the second ORV campaign was extended to include threshold altitudes of up to 2300 m a.s.l. to eliminate residual foci. The observations made may help in the formulation of ORV strategies in countries sharing similar topographical features.
To examine the pathogenesis of USA300 MRSA infection in long-term care residents, we performed a retrospective cohort study of 1691 adult residents of two extended-care facilities from 2003 to 2007 to assess whether the risk of subsequent MRSA infection is higher in USA300 MRSA-colonized residents compared to non-colonized residents or non-USA300 MRSA colonized residents. Six per cent of residents were colonized with USA300 MRSA; 12% of residents were colonized with non-USA300 MRSA; and 101 residents developed MRSA infection. The risk of infection was twofold higher in residents colonized with USA300 MRSA compared to residents not colonized with MRSA [adjusted hazard ratio 2·3, 95% confidence interval (CI) 1·1–4·5]. The risk of infection in USA300 MRSA-colonized residents was similar to USA300 MRSA non-colonized residents (relative risk 1·1, 95% CI 0·5–2·3). Our findings show that colonization with USA300 MRSA increases the risk of MRSA infection suggesting a similar pathogenesis.
The 2009 novel H1N1 influenza pandemic had a significant impact on Shenzhen's population with 2063 laboratory-confirmed human H1N1 cases and five deaths being reported. We used parameters from two population-based surveys and the Shenzhen Influenza Surveillance System to estimate the total number of H1N1 influenza infections in Shenzhen in the 2009 pandemic. The attack rate of influenza-like illness (ILI) in family households was 11·2% (95% CI 9·4–13·0), with 80·2% (95% CI 77·8–82·5) seeking medical care. The ILI attack rate in workers was 38·1% (95% CI 34·3–41·7) with 72·5% (95% CI 66·9–78·0) seeking medical care. The average H1N1 positive rate in individuals reporting ILI and testing by polymerase chain reaction was 22·7%. A total of 611 000–768 000 people, or 4·7–5·9% of the Shenzhen population, are estimated to have experienced H1N1 influenza. The estimated total number of cases of H1N1 is likely to be 330 times greater than the number of laboratory-confirmed cases.
Throughout the African meningitis belt, meningococcal meningitis outbreaks occur only during the dry season. Measles in Niger exhibits similar seasonality, where increased population density during the dry season probably escalates measles transmission. Because meningococcal meningitis and measles are both directly transmitted, we propose that host aggregation also impacts the transmission of meningococcal meningitis. Although climate affects broad meningococcal meningitis seasonality, we focus on the less examined role of human density at a finer spatial scale. By analysing spatial patterns of suspected cases of meningococcal meningitis, we show fewer absences of suspected cases in districts along primary roads, similar to measles fadeouts in the same Nigerien metapopulation. We further show that, following periods during no suspected cases, districts with high reappearance rates of meningococcal meningitis also have high measles reintroduction rates. Despite many biological and epidemiological differences, similar seasonal and spatial patterns emerge from the dynamics of both diseases. This analysis enhances our understanding of spatial patterns and disease transmission and suggests hotspots for infection and potential target areas for meningococcal meningitis surveillance and intervention.
The most common methods for evaluating interventions to reduce the rate of new Staphylococcus aureus (MRSA) infections in hospitals use segmented regression or interrupted time-series analysis. We describe approaches to evaluating interventions introduced in different healthcare units at different times. We compare fitting a segmented Poisson regression in each hospital unit with pooling the individual estimates by inverse variance. An extension of this approach to accommodate potential heterogeneity allows estimates to be calculated from a single statistical model: a ‘stacked’ model. It can be used to ascertain whether transmission rates before the intervention have the same slope in all units, whether the immediate impact of the intervention is the same in all units, and whether transmission rates have the same slope after the intervention. The methods are illustrated by analyses of data from a study at a Veterans Affairs hospital. Both approaches yielded consistent results. Where feasible, a model adjusting for the unit effect should be fitted, or if there is heterogeneity, an analysis incorporating a random effect for units may be appropriate.
Toxoplasmosis caused by the protozoan parasite, Toxoplasma gondii, is a worldwide zoonosis. In this paper published information on toxoplasmosis in humans and other animals in Ethiopia is reviewed. Limited data indicate that the prevalence of T. gondii in humans in Ethiopia is very high, up to 41% of children aged 1–5 years were reported to be seropositive. There is little information on seroprevalence data in pregnant women and no data on congenital toxoplasmosis in children. About 1 million adults in Ethiopia are considered to be infected with HIV with less than one-third likely receive highly active antiviral therapy. Based on a conservative T. gondii seroprevalence of 50%, thousands might die of concurrent opportunistic infections, including toxoplasmosis. However, exact figures are not available, and most serological surveys are not current. Serological surveys indicate up to 79% of goats and sheep have T. gondii antibodies. However, there is no information on losses due to toxoplasmosis in livestock or the presence of viable T. gondii in any host in Ethiopia.