Skip to main content Accessibility help
×
Home

What influences the home range size of free-roaming domestic dogs?

  • S. DÜRR (a1), N. K. DHAND (a2), C. BOMBARA (a2), S. MOLLOY (a2) and M. P. WARD (a2)...

Summary

In many regions of the world domestic dogs are free roaming and live in close relationship with humans. These free-roaming domestic dogs (FRDD) can cause public health problems such as dog bites and transmission of infectious diseases. To effectively control diseases transmitted by FRDD, knowledge on the dogs’ behaviour is required. To identify predictors of home range (HR) size, we collected global positioning system data from 135 FRDD living in eight Aboriginal and Torres Strait Islander communities in Northern Australia. The core HR size ranged from 0·17 to 2·33 ha and the extended HR size from 0·86 to 40·46 ha. Using a linear mixed effect model with a Restricted Maximum Likelihood approach, the dog's sex and reproductive status were identified as predictors of roaming. Non-castrated males had the largest HRs, followed by neutered females. Also, FRDDs were found to roam further during the pre- than the post-wet season. These findings have implications for infectious disease spread. Identification of risk groups for disease spread within a population allows for more targeted disease response and surveillance. Further investigation of predictors of roaming in other FRDD populations worldwide would increase the external validity of such studies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      What influences the home range size of free-roaming domestic dogs?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      What influences the home range size of free-roaming domestic dogs?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      What influences the home range size of free-roaming domestic dogs?
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: S. Dürr, Vetsuisse Faculty, Veterinary Public Health Institute, University of Bern, Schwarzenburgstrasse 155, CH-3097 Liebefeld, Switzerland. (Email: salome.duerr@vetsuisse.unibe.ch)

References

Hide All
1. Vila, C, et al. Multiple and ancient origins of the domestic dog. Science 1997; 276: 16871689.
2. Slater, MR. The role of veterinary epidemiology in the study of free-roaming dogs and cats. Preventive Veterinary Medicine 2001; 48: 273286.
3. Young, JK, et al. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 2011; 61: 125132.
4. Lembo, T, et al. Zoonoses Prevention, Control, and Elimination in Dogs. Dogs, Zoonoses and Public Health. Wallingford: CABI, 2013, pp. 205258.
5. Jenkins, D, et al. Echinococcus granulosus and other intestinal helminths: current status of prevalence and management in rural dogs of eastern Australia. Australian Veterinary Journal 2014; 92: 292298.
6. Bradburyl, L, Corlette, S. Dog health program in Numbulwar, a remote Aboriginal community in east Arnhem Land. Australian Veterinary Journal 2006; 84: 317320.
7. Meloni, B, et al. The prevalence of giardia and other intestinal parasites in children, dogs and cats from aboriginal communities in the Kimberley. Medical Journal of Australia 1993; 158: 157159.
8. Walton, SF, et al. Genetically distinct dog-derived and human-derived Sarcoptes scabiei in scabies-endemic communities in Northern Australia. American Journal of Tropical Medicine and Hygiene 1999; 61: 542547.
9. Gaskin, S, et al. The zoonotic potential of dogs in aboriginal communities in central Australia. Environmental Health 2007; 7: 3645.
10. Brown, G, et al. Detection of Anaplasma platys and Babesia canis vogeli and their impact on platelet numbers in free-roaming dogs associated with remote aboriginal communities in Australia. Australian Veterinary Journal 2006; 84: 321325.
11. Hii, S, et al. Canine vector-borne disease pathogens in dogs from south-east Queensland and north-east Northern Territory. Australian Veterinary Journal 2012; 90: 130135.
12. Barker, EN, et al. Haemoparasites of free-roaming dogs associated with several remote Aboriginal communities in Australia. BMC Veterinary Research 2012; 8: 55.
13. Murray, CJL, et al. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385: 117171.
14. Hampson, K, et al. Estimating the global burden of endemic canine rabies. PLoS Neglected Tropical Diseases 2015; 9: e0003709.
15. Conan, A, et al. Population dynamics of owned, free-roaming dogs: implications for rabies control. PLoS Neglected Tropical Diseases 2015; 9: e0004177.
16. Gsell, AS, et al. Domestic dog demographic structure and dynamics relevant to rabies control planning in urban areas in Africa: the case of Iringa, Tanzania. BMC Veterinary Research 2012; 8: 236.
17. Tenzin, T, et al. Free-roaming dog population estimation and status of the dog population management and rabies control program in Dhaka City, Bangladesh. PLoS Neglected Tropical Diseases 2015; 9: e0003784.
18. Mustiana, A, et al. Owned and unowned dog population estimation, dog management and dog bites to inform rabies prevention and response on Lombok Island, Indonesia. PLoS ONE 2015; 10: e0124092.
19. Morters, MK, et al. The demography of free-roaming dog populations and applications to disease and population control. Journal of Applied Ecology 2014; 51: 10961106.
20. Dalla Villa, P, et al. Free-roaming dog control among OIE-member countries. Preventive Veterinary Medicine 2010; 97: 5863.
21. Mindekem, R, et al. Impact of canine demography on rabies transmission in N'djamena, Chad. Médecine tropicale: revue du Corps de santeé colonial 2005; 65: 5358.
22. El Berbri, I, et al. Knowledge, attitudes and practices with regard to the presence, transmission, impact, and control of cystic echinococcosis in Sidi Kacem Province, Morocco. Infectious Diseases of Poverty 2015; 4: 48.
23. Sparkes, J, et al. Effects of sex and reproductive state on interactions between free-roaming domestic dogs. PLoS ONE 2014; 9: e116053.
24. Dias, RA, et al. Size and spatial distribution of stray dog population in the University of São Paulo campus, Brazil. Preventive Veterinary Medicine 2013; 110: 263273.
25. Gunata, IK. The Bio-Ecology of Dogs and Implementation of Radiotelemetry Technology to Determine Dog Home Ranges in Conjunction with Rabies Vaccination Programs in the District of Badung, Bali. Indonesia: Udayana University Bali, 2011.
26. Beck, A. The Ecology of Stray Dogs: A Study of Free-Ranging Urban Animals [Internet]. West Lafayette, Indiana: Purdue University Press, 2002, 117 p.
27. Meek, P. The movement, roaming behaviour and home range of free-roaming domestic dogs, Canis lupus familiaris, in coastal New South Wales. Wildlife Research 1999; 26: 847855.
28. Dürr, S, Ward, MP. Roaming behaviour and home range estimation of domestic dogs in Aboriginal and Torres Strait Islander communities in Northern Australia using four different methods. Preventive Veterinary Medicine 2014; 117: 340357.
29. Van Kesteren, F, et al. Dog ownership, dog behaviour and transmission of Echinococcus spp. in the Alay Valley, southern Kyrgyzstan. Parasitology 2013; 140: 16741684.
30. Vaniscotte, A, et al. Role of dog behaviour and environmental fecal contamination in transmission of Echinococcus multilocularis in Tibetan communities. Parasitology 2011; 138: 13161329.
31. Stephens, D, et al. Death by sex in an Australian icon: a continent-wide survey reveals extensive hybridization between dingoes and domestic dogs. Molecular Ecology 2015; 24: 56435656.
32. Bombara, C, et al. Roaming of dogs in remote Indigenous communities in Northern Australia and potential interaction between community and wild dogs. Australian Veterinary Journal 2017; in press.
33. Molloy, S, et al. Roaming behaviour of dogs in four remote Aboriginal communities in the Northern Territory, Australia: preliminary investigations. Australian Veterinary Journal 2017; in press. doi: 10.1111/avj.12562.
34. Burleigh, A, McMahon, S, Kiely, S. Owned dog and cat populations in remote Indigenous communities in the Northern Territory: a retrospective study. Australian Veterinary Journal 2015; 93: 145150.
35. Forin-Wiart, MA, et al. Performance and accuracy of lightweight and low-cost GPS data loggers according to antenna positions, fix intervals, habitats and animal movements. PLoS ONE 2015; 10: e0129271.
36. Benhamou, S. Dynamic approach to space and habitat use based on biased random bridges. PLoS ONE 2011; 6: e14592.
37. Berman, M, Dunbar, I. The social behaviour of free-ranging suburban dogs. Applied Animal Ethology 1983; 10: 517.
38. Saunders, G, et al. Urban foxes (vulpes vulpes): Food acquisition, time and energy budgeting of a generalized predator. Zoological Society of London Symposia. 1993; 65: 215234.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Dürr supplementary material
Figure S1

 Unknown (2.1 MB)
2.1 MB

What influences the home range size of free-roaming domestic dogs?

  • S. DÜRR (a1), N. K. DHAND (a2), C. BOMBARA (a2), S. MOLLOY (a2) and M. P. WARD (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed