Skip to main content Accessibility help
×
Home

Validation of the Puumala virus rapid field test for bank voles in Germany

  • D. REIL (a1) (a2), C. IMHOLT (a1), U. M. ROSENFELD (a3), S. DREWES (a3), S. FISCHER (a3), E. HEUSER (a3), R. PETRAITYTE-BURNEIKIENE (a4), R. G. ULRICH (a3) and J. JACOB (a1)...

Summary

Puumala virus (PUUV) causes many human infections in large parts of Europe and can lead to mild to moderate disease. The bank vole (Myodes glareolus) is the only reservoir of PUUV in Central Europe. A commercial PUUV rapid field test for rodents was validated for bank-vole blood samples collected in two PUUV-endemic regions in Germany (North Rhine-Westphalia and Baden-Württemberg). A comparison of the results of the rapid field test and standard ELISAs indicated a test efficacy of 93–95%, largely independent of the origin of the antigens used in the ELISA. In ELISAs, reactivity for the German PUUV strain was higher compared to the Swedish strain but not compared to the Finnish strain, which was used for the rapid field test. In conclusion, the use of the rapid field test can facilitate short-term estimation of PUUV seroprevalence in bank-vole populations in Germany and can aid in assessing human PUUV infection risk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Validation of the Puumala virus rapid field test for bank voles in Germany
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Validation of the Puumala virus rapid field test for bank voles in Germany
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Validation of the Puumala virus rapid field test for bank voles in Germany
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Mrs D. Reil, Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany. (Email: daniela.reil@julius-kuehn.de)

References

Hide All
1. Vapalahti, O, et al. Hantavirus infections in Europe. Lancet Infectious Diseases 2003; 3: 653661.
2. Klempa, B, Radosa, L, Kruger, DH. The broad spectrum of hantaviruses and their hosts in Central Europe. Acta Virologica 2013; 57: 130137.
3. Heyman, P, et al. A five-year perspective on the situation of haemorrhagic fever with renal syndrome and status of the hantavirus reservoirs in Europe, 2005–2010. Eurosurveillance 2011; 16: 1522.
4. Schlegel, M, et al. Hantavirus emergence in rodents, insectivores and bats: what comes next? In: Johnson, N, ed. The Role of Animals in Emerging Viral Diseases. Boston: Academic Press, 2014, pp. 235292.
5. Settergren, B. Clinical aspects of nephropathia epidemica (Puumala virus infection) in Europe: a review. Scandinavian Journal of Infectious Diseases 2000; 32: 125132.
6. Vaheri, A, et al. Hantavirus infections in Europe and their impact on public health. Reviews in Medical Virology 2013; 23: 3549.
7. Reil, D, et al. Beech fructification and bank vole population dynamics – combined analyses of promoters of human Puumala virus infections in Germany. PLoS ONE 2015; 10: 114.
8. Clement, J, et al. Relating increasing hantavirus incidences to the changing climate: the mast connection. International Journal of Health Geographics 2009; 8: 111.
9. Selva, N, et al. Mast pulses shape trophic interactions between fluctuating rodent populations in a primeval forest. PLoS ONE 2012; 7.
10. Hanski, I, et al. Small-rodent dynamics and predation. Ecology 2001; 82: 15051520.
11. Imholt, C, et al. Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus). Pest Management Science 2015; 71: 166172.
12. Hansson, L, Jedrzejewska, B, Jedrzejewski, W. Regional differences in dynamics of bank vole populations in Europe. Polish Journal of Ecology 2000; 48: 163177.
13. Escutenaire, S, et al. Spatial and temporal dynamics of Puumala hantavirus infection in red bank vole (Clethrionomys glareolus) populations in Belgium. Virus Research 2000; 67: 91107.
14. Tersago, K, et al. Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiology and Infection 2009; 137: 250256.
15. Kallio, ER, et al. Cyclic hantavirus epidemics in humans – predicted by rodent host dynamics. Epidemics 2009; 1: 101107.
16. Olsson, GE, et al. Predicting high risk for human hantavirus infections, Sweden. Emerging Infectious Diseases 2009; 15: 104106.
17. Zeimes, CB, et al. Landscape and regional environmental analysis of the spatial distribution of hantavirus human cases in Europe. Frontiers in Public Health 2015; 3.
18. Amirpour, Haredasht S, et al. Model-based prediction of nephropathia epidemica outbreaks based on climatological and vegetation data and bank vole population dynamics. Zoonoses and Public Health 2013; 60: 461477.
19. Zeimes, CB, et al. Modelling zoonotic diseases in humans: comparison of methods for hantavirus in Sweden. International Journal of Health Geographics 2012; 11.
20. Reil, D, et al. Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany? Zoonoses and Public Health 2016; 63: 8388.
21. Sirola, H, et al. Rapid field test for detection of hantavirus antibodies in rodents. Epidemiology and Infection 2004; 132: 549553.
22. Brummer-Korvenkontio, M, Henttonen, H, Vaheri, A. Hemorrhagic fever with renal syndrome in Finland: ecology and virology of nephropathia epidemica. Scandinavien Journal of Infectious Diseases 1982; 36: 8891.
23. Razanskiene, A, et al. High yields of stable and highly pure nucleocapsid proteins of different hantaviruses can be generated in the yeast Saccharomyces cerevisiae . Journal of Biotechnology 2004; 111: 319333.
24. Essbauer, SS, et al. Elucidation of unusual disease outbreaks: the outbreak of Puumala virus-related nephropathia epidemica in a German metropolis [in German]. Wehrmedizinische Monatsschriften 2007; 51: 325329.
25. Dargeviciute, A, et al. Yeast-expressed Puumala hantavirus nucleocapsid protein induces protection in a bank vole model. Vaccine 2002; 20: 35233531.
26. Reip, A, et al. Coding strategy of the S and M genomic segments of a hantavirus representing a new subtype of the Puumala serotype. Archives of Virology 1995; 140: 20112026.
27. Hofmann, J, et al. Hantavirus outbreak, Germany, 2007. Emerging Infectious Diseases 2008; 14: 850852.
28. Mertens, M, et al. Seroepidemiological study in a Puumala virus outbreak area in South-East Germany. Medical Microbiology and Immunology 2009; 198: 8391.
29. Mertens, M, et al. Phylogenetic analysis of Puumala virus subtype Bavaria, characterization and diagnostic use of its recombinant nucleocapsid protein. Virus Genes 2011; 43: 177191.
30. Jacob, J, et al. Monitoring populations of rodent reservoirs of zoonotic diseases [in German]. Bundesgesundheitsblatt-Gesundheitsforschung-Gesundheitsschutz 2014; 57: 511518.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed