Skip to main content Accessibility help
×
Home

Vaccine effectiveness and use of collar impregnated with insecticide for reducing incidence of Leishmania infection in dogs in an endemic region for visceral leishmaniasis, in Brazil

  • E. G. Lopes (a1), A. P. Sevá (a1), F. Ferreira (a1), C. M. Nunes (a2), L. B. Keid (a3), R. M. Hiramoto (a4), H. L. Ferreira (a3), T. M. F. S. Oliveira (a3), F. G. Ovallos (a5), E. A. B. Galati (a5), T. J. Villegas (a1), D. V. Bortoletto (a2), S. Y. O. B. Valadas (a1) and R. M. Soares (a1) (a5)...

Abstract

Although a national programme for control of visceral leishmaniosis (VL) is being run in Brazil, the disease continues to spread. This programme is essentially based on culling infected dogs from endemic regions. Thus, there is an urgent need to develop other control measures against VL to deter its advance. Here, a subunit vaccine, a recombinant vaccine, an insecticide-impregnated collar and the associations between these measures were evaluated for reducing the incidence of Leishmania infection in dogs. This was through a cohort study conducted in an endemic region of Brazil, considering the incidence and time of total exposure over a period of 1 year. The incidence of VL was estimated by means of serological and molecular diagnostic tests, 180 and 360 days after the application of the control measures. The estimates of the effectiveness (EF) were not significant in any cohort. The EF of the subunit vaccine, the recombinant vaccine and the collar were 26.4%, 32.8% and 57.7% and the upper limit of the 95% confidence interval for EF were 63.7%, 67.9% and 82.5%, respectively. In conclusion, under the conditions of this study, none of the immunogens for VL control was sufficiently effective to protect dogs against infection. On the other hand, use of collars impregnated with insecticide seems to constitute a method with better prognosis, corroborating other studies in this field.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Vaccine effectiveness and use of collar impregnated with insecticide for reducing incidence of Leishmania infection in dogs in an endemic region for visceral leishmaniasis, in Brazil
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Vaccine effectiveness and use of collar impregnated with insecticide for reducing incidence of Leishmania infection in dogs in an endemic region for visceral leishmaniasis, in Brazil
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Vaccine effectiveness and use of collar impregnated with insecticide for reducing incidence of Leishmania infection in dogs in an endemic region for visceral leishmaniasis, in Brazil
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: R. M. Soares, E-mail: rosoares@usp.br

References

Hide All
1.Baneth, G, et al. (2008) Canine leishmaniosis – new concepts and insights on an expanding zoonosis: part one. Trends in Parasitology 24, 324330. doi: 10.1016/j.pt.2008.04.001.
2.World Health Organization (WHO) (2013) Sustaining the Drive to Overcome the Global Impact of Neglected Tropical Diseases: Second WHO Report on Neglected Tropical Diseases. Geneva: WHO.
3.Bates, PA (2007) Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. International Journal for Parasitology 37, 10971106.10.1016/j.ijpara.2007.04.003
4.Ministério da Saúde, Brasil (2014) Manual de Vigilância e controle da Leishmaniose Visceral. Brasília: Ministério da Saúde do Brasil.
5.Rangel, O, et al. (2013) Classificação epidemiológica dos municípios segundo o Programa de Vigilância e Controle da Leishmaniose Visceral Americana no Estado de São Paulo, para 2013. BEPA, Boletim Epidemiológico Paulista 111, 314.
6.Killick-Kendrick, R, et al. (1997) Protection of dogs from bites of phlebotomine sandflies by deltamethrin collars for control of canine leishmaniasis. Medical and Veterinary Entomology 11, 105111.10.1111/j.1365-2915.1997.tb00298.x
7.Maroli, M, et al. (2001) Evidence for an impact on the incidence of canine leishmaniasis by the mass use of deltamethrin-impregnated dog collars in southern Italy. Medical and Veterinary Entomology 15, 358363.10.1046/j.0269-283x.2001.00321.x
8.Foglia Manzillo, V, et al. (2006) Deltamethrin-impregnated collars for the control of canine leishmaniasis: evaluation of the protective effect and influence on the clinical outcome of Leishmania infection in kennelled stray dogs. Veterinary Parasitology 142, 142145.10.1016/j.vetpar.2006.06.029
9.da Silva, VO, et al. (2000) A phase III trial of efficacy of the FML-vaccine against canine kala-azar in an endemic area of Brazil (São Gonçalo do Amaranto, RN). Vaccine 19, 10821092.10.1016/S0264-410X(00)00339-X
10.Coelho, EA, et al. (2003) Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infection and Immunity 71, 39883994.10.1128/IAI.71.7.3988-3994.2003
11.Zanin, FH, et al. (2007) Evaluation of immune responses and protection induced by A2 and nucleoside hydrolase (NH) DNA vaccines against Leishmania chagasi and Leishmania amazonensis experimental infections. Microbes and Infection 9, 10701077.10.1016/j.micinf.2007.05.012
12.Fernandes, CB, et al. 2014) Comparison of two commercial vaccines against visceral leishmaniasis in dogs from endemic areas: IgG, and subclasses, parasitism, and parasite transmission by xenodiagnosis. Vaccine 32, 12871295. doi: 10.1016/j.vaccine.2013.12.046.
13.Regina-Silva, S, et al. (2016) Field randomized trial to evaluate the efficacy of the Leish-Tec® vaccine against canine visceral leishmaniasis in an endemic area of Brazil. Vaccine 34, 22332239. doi: 10.1016/j.vaccine.2016.03.019.
14.Bortoletto, DV (2011) Influência da esterilização cirúrgica na população canina de área endêmica para leishmaniose visceral (dissertation). Araçatuba, SP, Brazil: Universidade Estadual Paulista Julio de Mesquita Filho, 120pp.
15.Francino, O, et al. (2006) Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Veterinary Parasitology 137, 214221.10.1016/j.vetpar.2006.01.011
16.Morgenstern, H, Kleinbaum, DG and Kupper, LL (1980) Measures of disease incidence used in epidemiologic research. International Journal of Epidemiology 9, 97104.10.1093/ije/9.1.97
17.R Core Team (2017) R: A Language and Environment for Statistical Computing: R Foundation for Statistical Computing. Vienna, Austria. Available at https://www.R-project.org/.
18.Therneau, T (2015) A Package for Survival Analysis in S. version 2.38, Available at https://CRAN.R-project.org/package=survival.
19.Camargo-Neves, VLF, Rodas, LAC and Pauliquévis Junior, C (2004) Avaliação da efetividade da utilização das coleiras impregnadas com deltametrina a 4% para o controle da Leishmaniose Visceral Americana no estado de São Paulo. BEPA, Boletim Epidemiológico Paulista 12, 714.
20.Ferroglio, E, Poggi, M and Trisciuoglio, A (2008) Evaluation of 65% permethrin spot-on and deltamethrin-impregnated collars for canine Leishmania infantum infection prevention. Zoonoses and Public Health 55, 145148. doi: 10.1111/j.1863-2378.2007.01092.x.
21.Brianti, E, et al. (2016) Field evaluation of two different treatment approaches and their ability to control fleas and prevent canine leishmaniosis in a highly endemic area. PLoS Neglected Tropical Disease 10, e0004987. doi: 10.1371/journal.pntd.0004987.
22.Reithinger, R, et al. (2004) Are insecticide-impregnated dog collars a feasible alternative to dog culling as a strategy for controlling canine visceral leishmaniasis in Brazil? International Journal for Parasitology 34, 5562.10.1016/j.ijpara.2003.09.006
23.Carson, C, et al. (2010) Comparison of Leishmania OligoC-TesT PCR with conventional and real-time PCR for diagnosis of canine Leishmania infection. Journal of Clinical Microbiology 48, 33253330. doi: 10.1128/JCM.02331-09.
24.da Costa-Val, AP, et al. (2007) Canine visceral leishmaniasis: relationships between clinical status, humoral immune response, haematology and Lutzomyia (Lutzomyia) longipalpis infectivity. Veterinary Journal 174. 636643.10.1016/j.tvjl.2006.11.006
25.Moshfe, A, et al. (2009) Canine visceral leishmaniasis: asymptomatic infected dogs as a source of L. infantum infection. Acta Tropica 112, 101105. doi: 10.1016/j.actatropica.2009.07.004.
26.Laurenti, MD, et al. (2013) Asymptomatic dogs are highly competent to transmit Leishmania (Leishmania) infantum chagasi to the natural vector. Veterinary Parasitology 196, 296300. doi: 10.1016/j.vetpar.2013.03.017.
27.Ribeiro, RR, et al. (2008) Reduced tissue parasitic load and infectivity to sand flies in dogs naturally infected by Leishmania (Leishmania) chagasi following treatment with a liposome formulation of meglumine antimoniate. Antimicrobial Agents and Chemotherapy 52, 25642572. doi: 10.1128/AAC.00223-08.
28.Courtenay, O, et al. (2014) Heterogeneities in Leishmania infantum infection: using skin parasite burdens to identify highly infectious dogs. PLOS Neglected Tropical Disease 9, e2583. doi: 10.1371/journal.pntd.0002583.
29.Quaresma, PF, et al. (2009) Molecular diagnosis of canine visceral leishmaniasis: identification of Leishmania species by PCR-RFLP and quantification of parasite DNA by real-time PCR. Acta Tropica 111, 289294. doi: 10.1016/j.actatropica.2009.05.008.
30.David, JR, et al. (2001) Deltamethrin-impregnated dog collars have a potent anti-feeding and insecticidal effect on Lutzomyia longipalpis and Lutzomyia migonei. Memórias do Instituto Oswaldo Cruz 96, 839847. doi: 10.1590/S0074-02762001000600018.
31.Lopes, EG, et al. (2017) Serological and molecular diagnostic tests for canine visceral leishmaniasis in Brazilian endemic area: one out of five seronegative dogs are infected. Epidemiology and Infection 145, 24362444. doi: 10.1017/S0950268817001443.
32.Quinnell, RJ, et al. (1997) The epidemiology of canine leishmaniasis: transmission rates estimated from a cohort study in Amazonian Brazil. Parasitology 115, 143156.10.1017/S0031182097001200

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed