Skip to main content Accessibility help
×
Home

Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters

  • D. A. Kalkowska (a1), M. A. Pallansch (a2) and K. M. Thompson (a1)

Abstract

Conditions and evidence continue to evolve related to the prediction of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters, which affect assumptions related to forecasting risks and evaluating potential risk management options. Multiple recent reviews provided information about individual iVDPV excreters, but inconsistencies among the reviews raise some challenges. This analysis revisits the available evidence related to iVDPV excreters and provides updated model estimates that can support future risk management decisions. The results suggest that the prevalence of iVDPV excreters remains highly uncertain and variable, but generally confirms the importance of managing the risks associated with iVDPV excreters throughout the polio endgame in the context of successful cessation of all oral poliovirus vaccine use.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: K. M. Thompson, E-mail: kimt@kidrisk.org

References

Hide All
1.Hampton, LM et al. (2016) Cessation of trivalent oral poliovirus vaccine and introduction of inactivated poliovirus vaccine – Worldwide, 2016. Morbidity and Mortality Weekly Report 65, 934938.
2.World Health Organization Global Polio Eradication Initiative (2013) Polio eradication and endgame Strategic Plan (2013–2018). Available at http://polioeradication.org/wp-content/uploads/2016/07/PEESP_EN_A4.pdf (Accessed 4 June 2019).
3.World Health Organization Global Polio Eradication Initiative (2015) Polio eradication & endgame: Midterm review July 2015. Available at http://polioeradication.org/wp-content/uploads/2016/07/GPEI-MTR_July2015.pdf (Accessed 4 June 2019).
4.Duintjer Tebbens, RJ et al. (2006) Risks of paralytic disease due to wild or vaccine-derived poliovirus after eradication. Risk Analysis 26, 14711505.
5.Duintjer Tebbens, RJ et al. (2013) Review: Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs). Risk Analysis 23, 680702.
6.Thompson, KM and Duintjer Tebbens, RJ (2014) Modeling the dynamics of oral poliovirus vaccine cessation. Journal of Infectious Diseases 210(suppl. 1), S475S484.
7.Duintjer Tebbens, RJ, Pallansch, MA and Thompson, KM (2015) Modeling the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus excretors and the potential benefits of antiviral drugs. BMC Infectious Diseases 15. doi: 10.1186/s12879-12015-11115-12875.
8.Duintjer Tebbens, RJ et al. (2013) Expert review on poliovirus immunity and transmission. Risk Analysis 33, 544605.
9.Duintjer Tebbens, RJ et al. (2013) Review and assessment of poliovirus immunity and transmission: synthesis of knowledge gaps and identification of research needs. Risk Analysis 33, 606646.
10.Alexander, JP Jr, Gary, HE Jr and Pallansch, MA (1997) Duration of poliovirus excretion and its implications for acute flaccid paralysis surveillance: a review of the literature. Journal of Infectious Diseases 175(suppl. 1), S176S182.
11.MacCallum, FO (1971) Hypogammaglobulinaemia in the United Kingdom. VII. The role of humoral antibodies in protection against and recovery from bacterial and virus infections in hypogammaglobulinaemia. Special report series (Medical Research Council (Great Britain)) 310, 7285.
12.Martín, J et al. (2000) Evolution of the Sabin strain of type 3 poliovirus in an immunodeficient patient during the entire 637-day period of virus excretion. Journal of Virology 74, 30013010.
13.Hara, M et al. (1981) Antigenic analysis of polioviruses isolated from a child with agammaglobulinemia and paralytic poliomyelitis after Sabin vaccine administration. Microbiology and Immunology 25, 905913.
14.Martin, J (2006) Vaccine-derived poliovirus from long term excretors and the end game of polio eradication. Biologicals 34, 117122.
15.Kew, OM et al. (1998) Prolonged replication of a type 1 vaccine-derived poliovirus in an immunodeficient patient. Journal of Clinical Microbiology 36, 28932899.
16.Duintjer Tebbens, RJ et al. (2015) An economic analysis of poliovirus risk management policy options for 2013–2052. BMC Infectious Diseases 15. doi: 10.1186/s12879-12015-11112-12878.
17.Duintjer Tebbens, RJ and Thompson, KM (2017) Comprehensive screening for immunodeficiency-associated vaccine-derived poliovirus: an essential OPV cessation risk management strategy. Epidemiology & Infection 145, 217226.
18.Guo, J et al. (2015) Immunodeficiency-related vaccine-derived poliovirus (iVDPV) cases: a systematic review and implications for polio eradication. Vaccine 33, 12351242.
19.Macklin, G et al. (2017) Prolonged excretion of poliovirus among individuals with primary immunodeficiency disorder: an analysis of the World Health Organization registry. Frontiers in Immunology 8, 1103.
20.Shaghaghi, M et al. (2018) New insights into physiopathology of immunodeficiency-associated vaccine-derived poliovirus infection; systematic review of over 5 decades of data. Vaccine 36, 17111719.
21.Burns, C et al. (2014) Vaccine-derived polioviruses. Journal of Infectious Diseases 210(suppl. 1), S283S293.
22.Yong, PF, Thaventhiran, JE and Grimbacher, B (2011) “A rose is a rose is a rose,” but CVID is not CVID: Common variable immune deficiency (CVID), what do we know in 2011? Advances in Immunology 111, 47107.
23.Orange, JS et al. (2006) Use of intravenous immunoglobulin in human disease: a review of evidence by members of the primary immunodeficiency committee of the American Academy of Allergy, Asthma and Immunology. Journal of Allergy and Clinical Immunology 117(suppl. 4), S525S553.
24.Hovi, T et al. (2012) Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiology & Infection 140, 113.
25.Hovi, T et al. (2013) Characteristics of an environmentally monitored prolonged type 2 vaccine derived poliovirus shedding episode that stopped without intervention. PLoS One 8, e66849.
26.Al-Hello, H et al. (2013) Highly divergent type 2 and 3 vaccine-derived polioviruses isolated from sewage in Tallinn, Estonia. Journal of Virology 87, 1307613080.
27.Roivainen, M et al. (2010) Highly divergent neurovirulent vaccine-derived polioviruses of all three serotypes are recurrently detected in Finnish sewage. Euro Surveillance 15, pii/19566.
28.Duintjer Tebbens, RJ, Hampton, LM and Thompson, KM (2018) Planning for globally coordinated cessation of bivalent oral poliovirus vaccine: risks of non-synchronous cessation and unauthorized oral poliovirus vaccine use. BMC Infectious Diseases 18, 165.
29.Dowdle, WR et al. (2006) Containment of polioviruses after eradication: characterizing risk to improve management. Risk Analysis 26, 14491469.
30.Thompson, KM and Duintjer Tebbens, RJ (2014) National choices related to inactivated poliovirus vaccine, innovation, and the end game of global polio eradication. Expert Review of Vaccines 13, 221234.
31.Anis, E et al. (2013) Insidious reintroduction of wild poliovirus into Israel, 2013. Euro Surveillance 18, 20586.
32.Kalkowska, DA et al. (2015) Modeling options to manage type 1 wild poliovirus imported into Israel in 2013. Journal of Infectious Diseases 211, 18001812.
33.Duintjer Tebbens, RJ, Hampton, LM and Thompson, KM (2016) Implementation of coordinated global serotype 2 oral poliovirus vaccine cessation: risks of potential non-synchronous cessation. BMC Infectious Diseases 16, 237.
34.Duintjer Tebbens, RJ, Hampton, LM and Thompson, KM (2016) Implementation of coordinated global serotype 2 oral poliovirus vaccine cessation: risks of inadvertent trivalent oral poliovirus vaccine use. BMC Infectious Diseases 16, 231.
35.National Research Council (2006) Exploring the Role of Antiviral Drugs in the Eradication of Polio: Workshop Report. Washington, DC: National Academy Press.
36.McKinlay, MA et al. (2014) Progress in the development of poliovirus antiviral agents and their essential role in reducing risks that threaten eradication. Journal of Infectious Diseases 210(suppl. 1), S447S453.
37.Collett, MS et al. (2017) Antiviral activity of pocapavir in a randomized, blinded, placebo-controlled human oral poliovirus vaccine challenge model. Journal of Infectious Diseases 215, 335343.
38.Halsey, NA et al. (2004) Search for polio virus carriers among people with primary immune deficiency diseases in the United States, Mexico, Brazil and the United Kingdom. Bulletin of the World Health Organization 82, 38.
39.Gathmann, B et al. (2009) The European internet-based patient and research database for primary immunodeficiencies: results 2006–2008. Clinical and Experimental Immunology 157(suppl 1), 311.
40.Mohammadinejad, P et al. (2012) Pediatric patients with common variable immunodeficiency: long-term follow-up. Journal of Investigational Allergology & Clinical Immunology 22, 208214.
41.Modell, V et al. (2011) Global study of primary immunodeficiency diseases (PI) – diagnosis, treatment, and economic impact: an updated report from the Jeffrey Modell Foundation. Immunologic Research 51, 6170.
42.Modell, V et al. (2014) Global overview of primary immunodeficiencies: a report from Jeffrey Modell Centers worldwide focused on diagnosis, treatment, and discovery. Immunologic Research 60, 132144.
43.Modell, V et al. (2016) Primary immunodeficiencies worldwide: an updated overview from the Jeffrey Modell Centers Global Network. Immunologic Research 64, 736753.
44.Modell, V et al. (2018) Global report on primary immunodeficiencies: 2018 update from the Jeffrey Modell Centers Network on disease classification, regional trends, treatment modalities, and physician reported outcomes. Immunologic Research 66, 367380.
45.Jorba, J et al. (2017) Update on vaccine-derived polioviruses – worldwide, January 2016–June 2017. Morbidity and Mortality Weekly Report 66, 11851191.
46.Jorba, J et al. (2018) Update on vaccine-derived polioviruses – worldwide, January 2017–June 2018. Morbidity and Mortality Weekly Report 67, 11891194.
47.World Bank (2019) World Bank list of economies (June 2019). Available at http://databank.worldbank.org/data/download/site-content/CLASS.xls (Accessed 17 July 2019).
48.Nandakumar, AK et al. (2009) Pathways of health technology diffusion: the United States and low-income countries. Health Affairs (Project Hope) 28, 986995.
49.Gathmann, B et al. (2014) Clinical picture and treatment of 2212 patients with common variable immunodeficiency. Journal of Allergy and Clinical Immunology 134, 116126.
50.Chapel, H et al. (2008) Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood 112, 277286.
51Mohanty, MC (2019) Natural clearance of prolonged VDPV infection in a child with primary immunodeficiency disorder. Frontiers in Immunology 10, 1567.
52Weil, M et al. (2019) First report of a persistent oropharyngeal infection of type 2 vaccine-derived poliovirus (iVDPV2) in a primary immune deficient (PID) patient after eradication of wild type 2 poliovirus. International Journal of Infectious Diseases 83, 4043.
53Global Polio Eradication Initiative (2018) Global Wild Poliovirus 2013–2018. Available at http://polioeradication.org/wp-content/uploads/2018/12/global-wild-poliovirus-2013-2018-20181204.pdf (Accessed 4 June 2019).
54Duintjer Tebbens, RJ and Thompson, KM (2018) Polio endgame risks and the possibility of restarting the use of oral poliovirus vaccine. Expert Review of Vaccines 17, 739751.
55Thompson, KM and Kalkowska, DA (2019) Logistical challenges and assumptions for modeling the failure of global cessation of oral poliovirus vaccine (OPV). Expert Review of Vaccines 18, 725736.

Keywords

Updated modelling of the prevalence of immunodeficiency-associated long-term vaccine-derived poliovirus (iVDPV) excreters

  • D. A. Kalkowska (a1), M. A. Pallansch (a2) and K. M. Thompson (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.