Skip to main content Accessibility help
×
Home

Trends in the epidemiology of invasive Haemophilus influenzae disease in Queensland, Australia from 2000 to 2013: what is the impact of an increase in invasive non-typable H. influenzae (NTHi)?

  • J. WAN SAI CHEONG (a1) (a2) (a3), H. SMITH (a4), C. HENEY (a1), J. ROBSON (a2), S. SCHLEBUSCH (a3) (a5), J. FU (a3) (a6) and C. NOURSE (a3) (a7)...

Summary

Following the introduction of vaccination against Haemophilus influenzae type b (Hib), cases of invasive encapsulated Hib disease have decreased markedly. This study aimed to examine subsequent epidemiological trends in invasive H. influenzae disease in Queensland, Australia and in particular, assess the clinical impact and public health implications of invasive non-typable H. influenzae (NTHi) strains. A multicentre retrospective study was conducted from July 2000 to June 2013. Databases of major laboratories in Queensland including Queensland Forensic and Scientific Services (jurisdictional referral laboratory for isolate typing) were examined to identify cases. Demographic, infection site, Indigenous status, serotype, and mortality data were collected. In total, 737 invasive isolates were identified, of which 586 (79·5%) were serotyped. Hib, NTHi and encapsulated non-b strains, respectively, constituted 12·1%, 69·1% and 18·8% of isolates. The predominant encapsulated non-b strains were f (45·5%) and a (27·3%) serotypes. Of isolates causing meningitis, 48·9% were NTHi, 14·9% Hib, 14·9% Hie, 10·6% Hif, 6·4% Hia and 4·3% were untyped. During the study period, there was an increase in the incidence of invasive NTHi disease (P = 0·007) with seasonal peaks in winter and spring (P < 0·001). The incidence of Hib disease (P = 0·295) and of encapsulated non-b disease (P = 0·122) did not change significantly. Highest overall incidence was in infants, Indigenous, and elderly patients. Australian Indigenous patients were more likely to have Hia (P > 0·001) and Hib (P = 0·039) than non-Indigenous patients. In Queensland, invasive H. influenzae disease is now predominantly encountered in adults and most commonly caused by NTHi strains with demonstrated pathogenicity extending to otherwise young or immunocompetent individuals. Routine public health notification of these strains is recommended and recent available immunization options should be considered.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Trends in the epidemiology of invasive Haemophilus influenzae disease in Queensland, Australia from 2000 to 2013: what is the impact of an increase in invasive non-typable H. influenzae (NTHi)?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Trends in the epidemiology of invasive Haemophilus influenzae disease in Queensland, Australia from 2000 to 2013: what is the impact of an increase in invasive non-typable H. influenzae (NTHi)?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Trends in the epidemiology of invasive Haemophilus influenzae disease in Queensland, Australia from 2000 to 2013: what is the impact of an increase in invasive non-typable H. influenzae (NTHi)?
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr J. Wan Sai Cheong, Sullivan Nicolaides Pathology, 134, Whitmore Street, Taringa, QLD 4068, Australia. (Email: Jenny.Cheong@health.qld.gov.au)

References

Hide All
1. Wang, H, et al. Trends in invasive Haemophilus influenzae type B disease in Australia, 1995–2005. Communicable Diseases Intelligence Quarterly Report 2008; 32: 316325.
2. Peltola, H. Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clinical Microbiology Reviews 2000; 13: 302317.
3. Agrawal, A, Murphy, TF. Haemophilus influenzae infections in the H. influenzae type b conjugate vaccine era. Journal of Clinical Microbiology 2011; 49: 37283732.
4. Ladhani, SN, et al. Invasive Haemophilus influenzae serotype e and f disease, England and Wales. Emerging Infectious Diseases 2012; 18: 725732.
5. Resman, F, et al. Invasive disease caused by Haemophilus influenzae in Sweden 1997–2009; evidence of increasing incidence and clinical burden of non-type b strains. Clinical Microbiology and Infection 2011; 17: 16381645.
6. McConnell, A, et al. Invasive infections caused by Haemophilus influenzae serotypes in twelve Canadian IMPACT centers, 1996–2001. Pediatric Infectious Disease Journal 2007; 26: 10251031.
7. Dworkin, MS, Park, L, Borchardt, SM. The changing epidemiology of invasive Haemophilus influenzae disease, especially in persons > or = 65 years old. Clinical Infectious Diseases 2007; 44: 810816.
8. Herceg, A. The decline of Haemophilus influenzae type b disease in Australia. Communicable Diseases Intelligence 1997; 21: 173176.
9. Australian Government DoHaA, National Health and Medical Research Council. The Australian Immunisation Handbook, 2008.
10. Horby, P, et al. Progress towards eliminating Hib in Australia: an evaluation of Haemophilus influenzae type b prevention in Australia, 1 July 1993 to 30 June 2000. Communicable Diseases Intelligence Quarterly Report 2003; 27: 324341.
11. Berndsen, MR, Erlendsdottir, H, Gottfredsson, M. Evolving epidemiology of invasive Haemophilus infections in the post-vaccination era: results from a long-term population-based study. Clinical Microbiology and Infection 2012; 18: 918923.
12. Adam, HJ, et al. Changing epidemiology of invasive Haemophilus influenzae in Ontario, Canada: evidence for herd effects and strain replacement due to Hib vaccination. Vaccine 2010; 28: 40734078.
13. MacNeil, JR, et al. Current epidemiology and trends in invasive Haemophilus influenzae disease – United States, 1989–2008. Clinical Infectious Diseases 2011; 53: 12301236.
16. Public Health Agency of Canada. (http://dsol-smed.phac-aspc.gc.ca/dsol-smed/ndis/list-eng.php).
18. Australian Bureau of Statistics. (http://www.abs.gov.au).
19. Falla, TJ, et al. PCR for capsular typing of Haemophilus influenzae . Journal of Clinical Microbiology 1994; 32: 23822386.
20. Stralin, K, et al. Design of a multiplex PCR for Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae and Chlamydophila pneumoniae to be used on sputum samples. APMIS 2005; 113: 99111.
21. CLSI. M100-S24 – Performance Standards for Antimicrobial SusceptibilityTesting; Twenty-Fourth Informational Supplement.
22. EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 3.1, 2013 (http://www.eucast.org).
23. Queensland Government. (http://www.oesr.qld.gov.au).
24. Rubach, MP, et al. Increasing incidence of invasive Haemophilus influenzae disease in adults, Utah, USA. Emerging Infectious Diseases 2011; 17: 16451650.
25. Gkentzi, D, Slack, MP, Ladhani, SN. The burden of nonencapsulated Haemophilus influenzae in children and potential for prevention. Current Opinion in Infectious Diseases 2012; 25: 266272.
26. Wiertsema, SP, et al. Predominance of nontypeable Haemophilus influenzae in children with otitis media following introduction of a 3 + 0 pneumococcal conjugate vaccine schedule. Vaccine 2011; 29: 51635170.
27. Quentin, R, et al. Typing of urogenital, maternal, and neonatal isolates of Haemophilus influenzae and Haemophilus parainfluenzae in correlation with clinical source of isolation and evidence for a genital specificity of H. influenzae biotype IV. Journal of Clinical Microbiology 1989; 27: 22862294.
28. Cherpes, TL, Kusne, S, Hillier, SL. Haemophilus influenzae septic abortion. Infectious Diseases in Obstetrics and Gynecology 2002; 10: 161164.
29. Ladhani, SN, Ramsay, M, Slack, MP. The impact of Haemophilus influenzae serotype B resurgence on the epidemiology of childhood invasive Haemophilus influenzae disease in England and Wales. Pediatric Infectious Disease Journal 2011; 30: 893895.
30. van Wessel, K, et al. Nontypeable Haemophilus influenzae invasive disease in The Netherlands: a retrospective surveillance study 2001–2008. Clinical Infectious Diseases 2011; 53: e17.
31. Collins, S, et al. Risk of invasive Haemophilus influenzae infection during pregnancy and association with adverse fetal outcomes. Journal of the American Medical Association 2014; 311: 11251132.
32. Jacups, SP, Morris, PS, Leach, AJ. Haemophilus influenzae type b carriage in Indigenous children and children attending childcare centers in the Northern Territory, Australia, spanning pre- and post-vaccine eras. Vaccine 2011; 29: 30833088.
33. Ulanova, M. Global epidemiology of invasive Haemophilus influenzae type a disease: do we need a new vaccine? Journal of Vaccines 2013; doi:10.1155/2013/941461.
34. Brown, VM, et al. Invasive Haemophilus influenzae disease caused by non-type b strains in Northwestern Ontario, Canada, 2002–2008. Clinical Infectious Diseases 2009; 49: 12401243.
35. Menzies, RI, et al. No evidence of increasing Haemophilus influenzae non-b infection in Australian Aboriginal children. International Journal of Circumpolar Health 2013; doi:http://dx.doi.org/10.3402/ijch.v72i0.20992.
36. Satola, SW, et al. Capsule gene analysis of invasive Haemophilus influenzae: accuracy of serotyping and prevalence of IS1016 among nontypeable isolates. Journal of Clinical Microbiology 2007; 45: 32303238.
37. Prymula, R, et al. Impact of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) on bacterial nasopharyngeal carriage. Vaccine 2011; 29: 19591967.
38. Prymula, R, et al. Immunological memory and nasopharyngeal carriage in 4-year-old children previously primed and boosted with 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) with or without concomitant prophylactic paracetamol. Vaccine 2013; 31: 20802088.
39. Murphy, TF. Vaccine development for non-typeable Haemophilus influenzae and Moraxella catarrhalis: progress and challenges. Expert Review of Vaccines 2005; 4: 843853.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed