Skip to main content Accessibility help
×
Home

Transmission dynamics of lumpy skin disease in Ethiopia

  • W. MOLLA (a1) (a2), K. FRANKENA (a1) and M. C. M. DE JONG (a1)

Summary

Lumpy skin disease (LSD) is a severe disease of cattle caused by a Capripoxvirus and often caused epidemics in Ethiopia and many other countries. This study was undertaken to quantify the transmission between animals and to estimate the infection reproduction ratio in a predominantly mixed crop–livestock system and in intensive commercial herd types. The transmission parameters were based on a susceptible-infectious-recovered (SIR) epidemic model with environmental transmission and estimated using generalized linear models. The transmission parameters were estimated using a survival rate of infectious virus in the environment equal to 0·325 per day, a value based on the best-fitting statistical model. The transmission rate parameter between animals was 0·072 (95% CI 0·068–0·076) per day in the crop–livestock production system, whereas this transmission rate in intensive production system was 0·076 (95% CI 0·068–0·085) per day. The reproduction ratio (R) of LSD between animals in the crop–livestock production system was 1·07, whereas it was 1·09 between animals in the intensive production system. The calculated R provides a baseline against which various control options can be assessed for efficacy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Transmission dynamics of lumpy skin disease in Ethiopia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Transmission dynamics of lumpy skin disease in Ethiopia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Transmission dynamics of lumpy skin disease in Ethiopia
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: W. Molla, Quantitative Veterinary Epidemiology, Wageningen University & Research, Droevendaalsesteeg 1, Radix, building No. 107, 6708 Wageningen, The Netherlands. (E-mail: wassie.abebe@wur.nl, mollawassie@yahoo.com)

References

Hide All
1. Davies, FG. Lumpy skin disease, an African capripox virus disease of cattle. British Veterinary Journal 1991; 147: 489503.
2. Carn, VM. Control of Capripoxvirus infections. Vaccine 1993; 11: 12751279.
3. Tuppurainen, ES, Oura, CA. Review: lumpy skin disease: an emerging threat to Europe, the Middle East and Asia. Transboundary and Emerging Diseases 2012; 59: 4048.
4. Tuppurainen, ES, et al. Review: Capripoxvirus diseases: current status and opportunities for control. Transboundary and Emerging Diseases 2017; 64: 729745. doi: 101111/tbed12444.
5. Carn, VM, Kitching, RP. An investigation of possible routes of transmission of lumpy skin disease virus (Neethling). Epidemiology and Infection 1995; 114: 219226.
6. Chihota, CM, et al. Mechanical transmission of lumpy skin disease virus by Aedes aegypti (Diptera: Culicidae). Epidemiology and Infection 2001; 126: 317321.
7. Tuppurainen, ES, et al. A potential role for ixodid (hard) tick vectors in the transmission of lumpy skin disease virus in cattle. Transboundary and Emerging Diseases 2011; 58: 93104.
8. Tuppurainen, ES, et al. Mechanical transmission of lumpy skin disease virus by Rhipicephalus appendiculatus male ticks. Epidemiology and Infection 2013; 141: 425430.
9. Tuppurainen, ES, et al. Evidence of vertical transmission of lumpy skin disease virus in Rhipicephalus decoloratus ticks. Ticks and Tick-borne Diseases 2013; 4: 329333.
10. Lubinga, JC, et al. Detection of lumpy skin disease virus in saliva of ticks fed on lumpy skin disease virus-infected cattle. Experimental & Applied Acarology 2013; 61: 129138.
11. Lubinga, JC, et al. Evidence of lumpy skin disease virus over-wintering by transstadial persistence in Amblyomma hebraeum and transovarial persistence in Rhipicephalus decoloratus ticks. Experimental & Applied Acarology 2014; 62: 7790.
12. Magori-Cohen, R, et al. Mathematical modelling and evaluation of the different routes of transmission of lumpy skin disease virus. Veterinary Research 2012; 43: 1. doi: 10.1186/1297-9716-43-1.
13. Becker, NG, Britton, T. Statistical studies of infectious disease incidence. Journal of the Royal Statistical Society: series B 1999; 61: 287307.
14. O'Neill, PD. Introduction and snapshot review: relating infectious disease transmission models to data. Statistics in Medicine 2010; 29: 20692077.
15. Kroese, AH, De Jong, MCM. Design and analysis of transmission experiments. In: Menzies, FD, Reid SWJ, , eds. Proceedings of the Society for Veterinary Epidemiology and Preventive Medicine. Society for Veterinary Epidemiology and Preventive Medicine, Noordwijkerhout, The Netherlands, 2001, pp. xxixxxvii.
16. Velthuis, AGJ, et al. Quantification of transmission in one-to-one experiments. Epidemiology and Infection 2002; 128: 193204.
17. Diekmann, O, Heesterbeek, JAP, Metz, JAJ. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology 1990; 28: 365382.
18. Chowell, G, Nishiura, H. Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Medicine 2014; 12: 196. doi: 10.1186/s12916-014-0196-0.
19. van Roermund, HJW, et al. No between-pen transmission of foot-and-mouth disease virus in vaccinated pigs. Vaccine 2010; 28: 44524461.
20. NMA. Annual climate bulletin. National meteorological agency (NMA), Addis Ababa Ethiopia (http://www.ethiomet.gov.et/bulletins/view_pdf/348/2013__annual__bulletin.pdf). Accessed 30 June, 2016. 2013.
21. Tuppurainen, ESM, Venter, EH, Coetzer, JAW. The detection of lumpy skin disease virus in samples of experimentally infected cattle using different diagnostic techniques. Onderstepoort Journal of Veterinary Research 2005; 72: 153164.
22. Woods, JA. Lumpy skin disease virus. In: Dinter, Z, Morein, B, eds. Virus Infections of Ruminants. Amsterdam: Elsevier Science publishers B. V., 1990, pp. 5367.
23. Gelaye, E, et al. Development of a cost-effective method for Capripoxvirus genotyping using snapback primer and dsDNA intercalating dye. PLoS ONE 2013; 8: e75971.
24. Velthuis, AGJ, et al. Design and analysis of an Actinobacillus pleuropneumoniae transmission experiment. Preventive Veterinary Medicine 2003; 60: 5368.
25. Heffernan, JM, Smith, RJ, Wahl, LM. Perspectives on the basic reproductive ratio. Journal of the Royal Society Interface 2005; 2: 281293.
26. Chowell, G, Nishiura, H, Bettencourt, LM. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. Journal of the Royal Society Interface 2007; 4: 155166.
27. Bravo de Rueda, C, et al. Quantification of transmission of foot-and-mouth disease virus caused by an environment contaminated with secretions and excretions from infected calves. Veterinary Research 2015; 46: 43. doi: 10.1186/s13567-015-0156-5.
28. Woods, JA. Lumpy skin disease – a review. Tropical Animal Health and Production 1988; 20: 1117.
29.Manual of diagnostic tests and vaccines for terrestrial animals, chapter 2·4·14, Lumpy skin disease. OIE, Paris (http://web.oie.int/eng/normes/MMANUAL/A_Index.htm) (accessed 26 February 2016).
31. Goddard, J. Infectious Diseases and Arthropods, 2nd edn. USA: Humana Press, 2008, pp. 1928.
32. Stegeman, A, et al. Transmission of classical swine fever virus within herds during the 19971998 epidemic in the Netherlands. Preventive Veterinary Medicine 1999; 42: 201218.
33. Graat, EAM, et al. Modelling the effect of surveillance programmes on spread of bovine herpesvirus 1 between certified cattle herds. Veterinary Microbiology 2001; 79: 193208.
34. Hage, JJ, et al. Transmission of bovine herpesvirus 1 within and between herds on an island with a BHV1 control programme. Epidemiology and Infection 2003; 130: 541552.

Keywords

Type Description Title
WORD
Supplementary materials

Molla supplementary material
Table S1

 Word (41 KB)
41 KB
WORD
Supplementary materials

Molla supplementary material
Table S2

 Word (179 KB)
179 KB

Transmission dynamics of lumpy skin disease in Ethiopia

  • W. MOLLA (a1) (a2), K. FRANKENA (a1) and M. C. M. DE JONG (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed