Skip to main content Accessibility help
×
Home

Transmission and quantification of verocytotoxin-producing Escherichia coli O157 in dairy cattle and calves

  • J. M. SCHOUTEN (a1) (a2), E. A. M. GRAAT (a1), K. FRANKENA (a1), F. VAN ZIJDERVELD (a3) and M. C. M. DE JONG (a1)...

Summary

Data from a field study of 14 months duration in a naturally colonized dairy herd and data from an experiment with calves were used to quantify transmission of verocytotoxin-producing Escherichia coli (VTEC O157) in cattle. For the latter, two groups of 10 calves were randomly assigned and put out in one of two pastures. From each group, five animals were experimentally inoculated with 109 c.f.u. O157 VTEC and, considered infectious, put back in their group. Each of the susceptible contact calves became positive within 6 days of being reunited. The estimate of the basic reproduction ratio (R0) in the experiment was 7·3 (95% CI 3·92–11·5), indicating that each infectious calf will infect seven other calves on average during an assumed infectious period of 28 days in a fully susceptible population. The R0 among dairy cows appeared to be about 10 times lower (0·70, 95% CI 0·48–1·04). After the transmission experiment, six contact-infected animals that were shedding continuously during the experiment were housed in a tie stall during winter. After 40 days, all six tested negative for O157 VTEC. In June, after a period of 34 weeks in which the heifers remained negative, they were put out in a clean and isolated pasture to observe whether they started shedding again. On each pasture that was infected with O157 VTEC during the transmission experiment the previous summer, newly purchased susceptible calves were placed. None of the heifers or calves started shedding during 14 weeks, indicating that both the heifers and the previously contaminated pasture did not function as reservoir of O157 VTEC.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Transmission and quantification of verocytotoxin-producing Escherichia coli O157 in dairy cattle and calves
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Transmission and quantification of verocytotoxin-producing Escherichia coli O157 in dairy cattle and calves
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Transmission and quantification of verocytotoxin-producing Escherichia coli O157 in dairy cattle and calves
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr J. M. Schouten, Quantitative Veterinary Epidemiology Group, Wageningen Institute of Animal Sciences (WIAS), Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands. (Email: Vonkn@pallas-healthresearch.com)

References

Hide All
1. Tesh, VL, O'Brien, AD. The pathogenic mechanisms of Shiga toxin and Shiga-like toxins. Molecular Microbiology 1991; 59: 18171822.
2. Karmali, MA. Infection by verocytotoxin-producing Escherichia coli. Clinical Microbiological Reviews 1989; 2: 1538.
3. O'Brien, AD, Kaper, JB. Shiga-toxin producing Escherichia coli: yesterday, today, and tomorrow. In: Kaper, JB, O'Brien, AD eds. Escherichia coli O157:H7 and Other Shiga-toxin Producing E. coli Strains. Washington DC: ASM Press, 1998, pp. 111.
4. Dev, V, Main, M, Gould, I. Waterborne outbreak of Escherichia coli O157. Lancet 1991; 337: 1412.
5. Renwick, SA, et al. Evidence of direct transmission of Escherichia coli O157:H7 infection between calves and a human. Journal of Infectious Diseases 1993; 168: 792793.
6. Keene, WE, et al. A swimming-associated outbreak of hemorrhagic colitis caused by Escherichia coli O157:H7 and Shigella sonnei. New England Journal of Medicine 1994; 331: 579584.
7. Armstrong, GL, Hollingswoth, J, Morris, JG Jr.. Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiologic Reviews 1996; 18: 2951.
8. Ackers, ML, et al. An outbreak of Escherichia coli O157:H7 infections associated with leaf lettuce consumption. Journal of Infectious Diseases 1998; 177: 15881593.
9. Heuvelink, AE, et al. Verocytotoxin-producing Escherichia coli infection in household members of children with hemolytic-uremic syndrome in the Netherlands. Pediatric Infectious Disease Journal 1999; 18: 709714.
10. Griffin, PM, Tauxe, RV. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiologic Reviews 1991; 13: 6080.
11. Meng, J, Doyle, MP. Microbiology of Shiga toxin-producing Escherichia coli in foods. In: Kaper, JB, O'Brien, AD eds. Escherichia coli O157:H7 and Other Shiga-toxin Producing E. coli Strains. Washington DC: ASM Press, 1998, pp. 92108.
12. Chapman, PA, et al. Cattle as a possible source of verocytotoxin-producing Escherichia coli O157:H7 infections in man. Epidemiology and Infection 1993; 111: 439447.
13. Heuvelink, AE, et al. Occurrence of verocytotoxin-producing Escherichia coli O157 on Dutch dairy farms. Journal of Clinical Microbiology 1998; 36: 34803487.
14. Schouten, JM, et al. Prevalence estimation and risk factor analysis of verocytotoxin producing Escherichia coli O157 on Dutch dairy farms. Preventive Veterinary Medicine 2004; 64: 4961.
15. Schouten, JM, et al. Escherichia coli O157 prevalence in Dutch poultry, pig finishing and veal herds and risk factors on Dutch veal herds. Preventive Veterinary Medicine 2005; 70: 115.
16. Schouten, JM, et al. A longitudinal study of Escherichia coli O157 in cattle of a Dutch dairy farm and in the farm environment. Veterinary Microbiology 2005; 107: 193204.
17. Hancock, DD, et al. A longitudinal study of Escherichia coli O157 in fourteen cattle herds. Epidemiology and Infection 1997; 118: 193195.
18. Mechie, SC, Chapman, PA, Siddons, CA. A fifteen month study of Escherichia coli O157:H7 in a dairy herd. Epidemiology and Infection 1997; 118: 1725.
19. Garber, L, et al. Factors associated with fecal shedding of verocytotoxin-producing Escherichia coli O157 on dairy farms. Journal of Food Protection 1999; 62: 307312.
20. Brown, CA, et al. Experimental Escherichia coli O157:H7 carriage in calves. Applied Environmental Microbiology 1997; 63: 2732.
21. Cray, WC Jr., Moon, HW. Experimental infection of calves and adult cattle with Escherichia coli O157:H7. Applied Environmental Microbiology 1995; 61: 15861590.
22. Wells, JG, et al. Isolation of Escherichia coli serotype O157:H7 and other shiga-like-toxin-producing E. coli from dairy cattle. Journal of Clinical Microbiology 1991; 29: 985989.
23. Zhao, T, et al. Prevalence of enterohemorrhagic Escherichia coli O157:H7 in a survey of dairy herds. Applied Environmental Microbiology 1995; 61: 12901293.
24. Laegreid, WW, Keen, JE. Estimation of the basic reproduction ratio (R 0) for Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) in beef calves. Epidemiology and Infection 2004; 132: 291295.
25. Turner, J, et al. A model appropriate to the transmission of a human food-borne pathogen in a multigroup managed herd. Preventive Veterinary Medicine 2003; 57: 175198.
26. Matthews, L, et al. Heterogenous shedding of Escherichia coli O157 in cattle and its implications for control. Proceedings of the National Academy of Sciences USA 2006; 103: 547552.
27. Kermack, WO, McKendrick, AG. Contributions to the mathematical theory of epidemics. I. 1927 (classical article). Bulletin of Mathemathical Biology 1991; 53: 3355.
28. Jong, MCM de, Kimman, TG. Experimental quantification of vaccine-induced reduction in virus transmission. Vaccine 1994; 12: 761766.
29. Faith, NG, et al. Prevalence and clonal nature of Escherichia coli O157:H7 on dairy farms in Wisconsin. Applied Environmental Microbiology 1996; 62: 15191525.
30. Becker, NG. Analysis of Infectious Disease Data. London, New York: Chapman and Hall, 1989, 223 pp.
31. Laegreid, WW, Elder, RO, Keen, JE. Prevalence of Escherichia coli O157:H7 in range beef calves at weaning. Epidemiology and Infection 1999; 123: 291298.
32. Sanderson, MW, et al. Fecal Escherichia coli O157:H7 shedding patterns of orally inoculated calves. Veterinary Microbiology 1999; 9: 199205.
33. Stewart, CS, Flint, HJ (eds). Escherichia coli O157 in Farm Animals. Oxon, UK: CABI Publishing, 1999, pp. 195223.
34. Potter, AA, et al. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 2004; 22: 362369.
35. Looper, ML, et al. Escherichia coli and Salmonella in beef cattle grazing tall fescue. Arkansas Experiment Station Research Series 2003; 509: 5860.
36. Smith, D, et al. Ecological relationship between the prevalence of cattle shedding Escherichia coli O157:H7 and characteristics of the cattle or conditions of the feedlot pen. Journal of Food Protection 2001; 64: 18991903.
37. Donkersgoed, J van, Graham, T, Gannon, V. The prevalence of verotoxins, Escherichia coli O157:H7, and Salmonella in the feces and rumen of cattle at processing. Canadian Veterinary Journal 1999; 40: 332338.

Transmission and quantification of verocytotoxin-producing Escherichia coli O157 in dairy cattle and calves

  • J. M. SCHOUTEN (a1) (a2), E. A. M. GRAAT (a1), K. FRANKENA (a1), F. VAN ZIJDERVELD (a3) and M. C. M. DE JONG (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed