Skip to main content Accessibility help
×
Home

Study of the impact on Salmonella of moving outdoor pigs to fresh land

  • R. P. SMITH (a1), V. ANDRES (a2), L. DORMER (a1), R. GOSLING (a1), C. OASTLER (a1) and R. H. DAVIES (a1)...

Summary

Anecdotal evidence has suggested that outdoor-kept pigs show an improvement to health and productivity after being moved to a new site. This study explores whether Salmonella occurrence reduced and was sustained after moving to a new site. Nine farms were followed for a year in which four sampling visits were completed. The highest detection of Salmonella was from pooled faecal dropping from pigs, run-off/ pooled water, rodents and wild birds. Descriptive summaries showed that the prevalence of both all Salmonella and serovars of public health importance were lower at all visits after the move. Some variability was shown in results from individual farms, but a year after the move, six farms still maintained a lower prevalence. A risk factor model showed that the prevalence at visits 2 and 3 after the move was significantly lower than baseline, after accounting for a number of significant factors that were included in the model. These were sample type and seasonality (included as a priori), presence of coughing in the sampled group and Glasser's disease on the farm, and the use of tent or kennel accommodation. This finding provides important evidence that more frequent site moves may help reduce Salmonella prevalence in outdoor herds.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Study of the impact on Salmonella of moving outdoor pigs to fresh land
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Study of the impact on Salmonella of moving outdoor pigs to fresh land
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Study of the impact on Salmonella of moving outdoor pigs to fresh land
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr R. P. Smith, APHA – Weybridge, New Haw, Addlestone, Surrey KT15 3NB, UK. (Email: Richard.P.Smith@apha.gsi.gov.uk)

References

Hide All
1. EFSA/ECDC. European Food Safety Authority and European Centre for Disease Prevention and Control, 2014. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2012. EFSA Journal 2014; 12: 3547.
2. Hauser, E, et al. Pork contaminated with Salmonella enterica Serovar 4,[5],12:I;-, an emerging health risk for humans. Applied and Environmental Microbiology 2010; 76: 46014610.
3. Anon. Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in slaughter pigs, Part A. The EFSA Journal 2008; 135: 1111.
4. Marier, EA, et al. Abattoir based survey of Salmonella in finishing pigs in the United Kingdom 2006–2007. Preventive Veterinary Medicine 2014; 117: 542553.
5. FAWC (Farm Animal Welfare Council). FAWC report on the welfare of pigs kept outdoors (https://www.gov.uk/government/publications/fawc-report-on-the-welfare-of-pigs-kept-outdoors). Accessed 28 March 2017.
6. Houston, S. Structure of the UK pig industry. The Pig Journal 2013; 69: 16.
7. Wingstrand, A, Dahl, J, Lo Fo Wong, DMA. Salmonella-prevalences in Danish organic, free-range, conventional and breeding herds. In: Proceedings of the 3rd International Symposium on Epidemiology and Control of Salmonella in Pork, Washington, DC, USA, 1999, pp. 186189.
8. van der Wolf, PJ, et al. Salmonella seroprevalence at the population and herd level in pigs in the Netherlands. Veterinary Microbiology 2001; 80: 171184.
9. EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA Journal 2011; 9: 1378.
10. Jensen, AN, et al. Survival and transmission of Salmonella enterica serovar typhimurium in an outdoor organic pig farming environment. Applied and Environmental Microbiology 2006; 72: 18331842.
11. Meyer, C, Beilage, GE, Krieter, J. Salmonella seroprevalence in different pig production systems. Tieraerztl Prax Ausg Grosstiere Nutztiere 2005; 33: 104112.
12. Quality Meat Scotland. Wild Bird Populations – Control and Impact: Contribution to Salmonella and Feed Costs on Indoor and Outdoor Pig Units. QMS, Leaflet, 2010.
13. Beloeil, PA, et al. Risk factors for Salmonella enterica subsp. enterica shedding by market-age pigs in French farrow-to-finish herds. Preventive Veterinary Medicine 2004; 63: 103120.
14. Nollet, N, et al. Risk factors for the herd-level bacteriologic prevalence of Salmonella in Belgian slaughter pigs. Preventive Veterinary Medicine 2004; 65: 6375.
15. Hotes, S, et al. Risk factors for Salmonella infection in fattening pigs – an evaluation of blood and meat juice samples. Zoonoses Public Health 2010; 57: 3038.
16. Gebreyes, WA, et al. Seroprevalence of Trichinella, Toxoplasma, and Salmonella in antimicrobial-free and conventional swine production systems. Foodborne Pathogens and Disease 2008; 5: 199203.
17. Zheng, DM, Bonde, M, Sørensen, JT. Associations between the proportion of Salmonella seropositive slaughter pigs and the presence of herd level risk factors for introduction and transmission of Salmonella in 34 Danish organic, outdoor (non-organic) and indoor finishing-pig farms. Livestock Science 2007; 106: 189199.
18. International Organization for Standardization. Annex D: detection of Salmonella spp. in animal faeces and in environmental samples from the primary production stage (https://www.iso.org/standard/42109.html). Last accessed 28 March 2017.
19. Wales, A, et al. A longitudinal study of environmental Salmonella contamination in caged and free-range layer flocks. Avian Pathology 2007; 36: 187197.
20. Chatfield, C. The Analysis of Time Series: an Introduction, 6th edn. Boca Raton, Florida, USA: CRC Press, 2003.
21. Bonde, M, Sørensen, JT. Herd health management in organic pig production using a quality assurance system based on Hazard Analysis and Critical Control Points. NJAS-Wageningen Journal of Life Sciences 2004; 52: 133143.
22. Funk, JA, Davies, PR, Gebreyes, W. Risk factors associated with Salmonella enterica prevalence in three-site swine production systems in North Carolina, USA. Berliner Und Munchener Tierarztliche Wochenschrift 2001; 114: 335338.
23. Hald, T, Andersen, JS. Trends and seasonal variations in the occurrence of Salmonella in pigs, pork and humans in Denmark, 1995–2000. Berliner Und Munchener Tierarztliche Wochenschrift 2001; 114: 346349.
24. Früh, B, et al. Organic Pig Production in Europe – Health Management in Common Organic Pig Farming. 2011, First edition Technical guide (http://orgprints.org/19166/).
25. Lo Fo Wong, DMA, et al. Herd-level risk factors for subclinical Salmonella infection in European finishing-pig herds. Preventive Veterinary Medicine 2004; 62: 253266.
26. Wales, AD, et al. Longitudinal survey of the occurrence of Salmonella in pigs and the environment of nucleus breeder and multiplier pig herds in England. Veterinary Record 2009; 165: 648657.
27. Fedorka-Cray, PJ, Gray, JT, Wray, C. Salmonella infections in pigs. In: Wray, C, ed. Salmonella in Domestic Animals. Wallingford, UK: CABI Publishing, 2000, pp. 191208.
28. Smith, RP, et al. Abattoir-based study investigating the association between gross pathological lesions and serological tests for Salmonella infection in pigs. Veterinary Record 2011; 168: 240.
29. Scott, K, et al. The welfare of finishing pigs in two contrasting housing systems: fully-slatted versus straw-bedded accommodation. Livestock Science 2006; 103: 104115.
30. Maes, D, et al. Control of Mycoplasma hyopneumoniae infections in pigs. Veterinary Microbiology 2008; 126: 297309.
31. Baggesen, DL, Dahl, J, Wingstrand, A, Nielsen, B. Detection of Salmonella enterica in different materials from the environment of pig herds. In: Bech-Nielsen, S, Nielsen, JP, eds. Proceedings of the Second International Symposium on Epidemiology and Control of Salmonella in Pork. Copenhagen, Denmark, 1997, pp. 173175.

Keywords

Study of the impact on Salmonella of moving outdoor pigs to fresh land

  • R. P. SMITH (a1), V. ANDRES (a2), L. DORMER (a1), R. GOSLING (a1), C. OASTLER (a1) and R. H. DAVIES (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed