Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T12:21:03.289Z Has data issue: false hasContentIssue false

A study of phenotypic variation of Staphylococcus epidermidis using Congo red agar

Published online by Cambridge University Press:  15 May 2009

M. A. Deighton
Affiliation:
Department of Applied Biology and Biotechnology, Royal Melbourne Institute of Technology, Melbourne, Australia
J. Capstick
Affiliation:
Department of Applied Biology and Biotechnology, Royal Melbourne Institute of Technology, Melbourne, Australia
R. Borland
Affiliation:
Department of Applied Biology and Biotechnology, Royal Melbourne Institute of Technology, Melbourne, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This study examines a series of phenotypic variants of Staphylococcus epidermidis that were generated from a pair of parent variants, isolated from valvular tissue of a patient with prosthetic valve endocarditis. The variants were initially classified by examining their colonial morphology on Congo red agar. In addition to differences in Congo red binding and colonial morphology, they differed in the expression of several surface components and enzymes. Despite these phenotypic differences, all variants had the same restriction endonuclease profile of plasmid DNA. Examination of a collection of clinical isolates demonstrated that phenotypic variation is a common property of S. epidermidis. The ability to express different combinations of surface components and enzymes could contribute to the virulence of S. epidermidis strains by enabling these organisms to colonize a range of diverse environments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

References

REFERENCES

1.L'Ecuyer, C. Exudative epidermitis in pigs. Clinical studies and preliminary transmission trials. Can J Comp Med Vet Sci 1966; 30: 916.Google Scholar
2.Penny, RHC, Muirhead, MR. In: Leman, AD, Straw, RD. Glock, WL, Mengeling, WL, Penny, RHC, Scholl, E., eds. Diseases of swine. Ames, Iowa, U.S.A: Iowa State University Press. 1986: 82101.Google Scholar
3.Phillips, WE, King, RE, Kloos, WE. Isolation of Staphylococcus hyicus subsp. hyicus from a pig with septic polyarthritis. Am J Vet Res 1979; 41: 274–6.Google Scholar
4.Onet, GE, Pommer, JL. Staphylococcus hyicus abortion in a Sow. J Amer Vet Med Assn 1991; 199: 362–3.CrossRefGoogle Scholar
5.Hunter, D, Todd, JN, Larkin, M. Exudative epidermitis of pigs. Br Vet J 1970: 126: 225–9.Google Scholar
6.Stuker, G, Betschinger, HU. Staphylococcus hyicus: Kulturell-biochemische characterisierung, serologische typisierung und pathogenitätsnachweis im tierversuch. Zentralbl Veterinärmed (B) 1976; 23: 733–43.Google Scholar
7.Amtsberg, G. Unterzuchungen zur vorkommen von Staphylococcus hyicus beim schwein bzw. Staphylococcus epidermidis biotyp 2 bei anderen tierarten. Dtsch Tierärtztl Wochenschr 1978; 85: 385–9.Google Scholar
8.Wegener, HC. Staphylococcus hyicus epidemiology and virulence in relation to exudative epidermitis in pigs. Ph.D. thesis, Royal Veterinary and Agricultural University, Copenhagen, Denmark 1992.Google Scholar
9.Taylor, DJ. Pig diseases. Foxton, Cambridge: The Burlington Press Ltd, 1983.Google Scholar
10. Pigletter Authors. Greasy pig (disease review). Int Pigletter 1991; 11: 30–2.Google Scholar
11.Devriese, LA. Isolation and Identification of Staphylococcus hyicus. Am J Vet Res 1977; 38: 787–92.Google ScholarPubMed
12.Devriese, LA, Schleifer, KH, Adegoke, GO. Identification of coagulase-negative staphylococci from farm animals. J Appl Bacteriol 1985; 58: 4555.Google Scholar
13.Lachica, RVF, Genigeorgis, C, Hoeprich, PD. Metachromatic agar-diffusion methods for detecting staphylococcal nuclease activity. Appl Microbiol 1971; 21: 585–7.Google Scholar
14.Faller, A, Schleifer, KH. Modified oxidase and benzidene tests for separation of Staphylococci from Micrococci. J Clin Microbiol 1981; 13: 1031–5.CrossRefGoogle Scholar
15.Devriese, LA, Hájek, V. Identification of pathogenic staphylococci isolated from animals and foods derived from animals. J Appl Bacteriol 1980; 49: 111.CrossRefGoogle ScholarPubMed
16.Hébert, GA, Crowder, CG, Hancock, GA, Jarwis, WR, Thornsberry, C. Characteristics of coagulase-negative staphylococci that help differentiate these species and other members of the family Micrococcaceae. J Clin Microbiol 1988; 26: 1939–49.Google Scholar
17.Holmes, DS, Quigley, M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 1981; 114: 193–7.Google Scholar
18.Macrina, FL, Kopecko, DJ, Jones, KR, Ayers, DJ, McCowen, SM. A multiple plasmid-containing Eschericia coli strain: convenient source of size reference plasmid molecules. Plasmid 1978; 1: 417–20.Google Scholar
19.Threlfall, EJ, Rowe, B, Ferguson, JL, Ward, LR. Characterization of plasmids conferring resistance to gentamicin and apramycin in strains of Salmonella typhimurium phage type 204c isolated in Britain. J Hyg 1986; 97: 419–26.Google Scholar
20.Lautrop, H, Høiby, N, Bremmelgaard, A, Korsager, B. Bakteriologiske undersøgelser. Copenhagen, Aarhus, Odense, Denmark: FADL, 1976:Google Scholar
21.Casals, JB, Pringler, N. Antibacterial sensitivity testing using Neo-Sensistabs. Taastrup, Denmark: Rosco Diagnostica, 1991.Google Scholar
22.Amtsberg, G, Bollwahn, W, Hazem, S, Jordan, B, Schmidt, U. Bakteriologische und tierexperimentelle untersuchungen zur ätiologischen bedeutung von Staphylococcus hyicus beim nässendem ekzem des schweines. Dtsch Tierärztl Wochenschr 1973; 80: 521–3.Google Scholar