Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-02T13:12:12.847Z Has data issue: false hasContentIssue false

Some errors in gas analysis using the Haldane apparatus

Published online by Cambridge University Press:  15 May 2009

E. T. Renbourn
Affiliation:
Department of Applied Physiology, London School of Hygiene and Tropical Medicine
J. McK. Ellison
Affiliation:
Department of Applied Physiology, London School of Hygiene and Tropical Medicine
L. M. Croton
Affiliation:
Department of Applied Physiology, London School of Hygiene and Tropical Medicine
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The paper represents an attempt to estimate the error of the standard 10 ml. Haldane gas analysis apparatus under routine conditions of use.

2. The ultimate error of the instrument under optimum conditions has been obtained from duplicate mercury calibrations of the same instrument and corresponds to s.d. = 0·013% gas. A significant day-to-day variation in calibration was found.

3. The accuracy in routine use has been determined by replicate estimations of CO2 and O2 in air and from estimation of CO2 in designed experiments. The data show an error corresponding to s.d. = 0·027 to 0·13%. This is far larger than that described by Haldane.

4. Examination of the distribution of terminal digits in burette readings shows that the smallest scale division is in fact not being divided into ten parts by the worker. Preference for certain digits varies with the individual, with time, and with the accuracy required.

5. There is a marked tendency for a worker to obtain an ‘expected result’, whether this is derived from a previous estimation of the same sample or from knowledge of the expected result; such bias tends to reduce the apparent error of estimation. Bias of replication—‘prejudice error’—may play a part in many forms of measurement.

6. The results and conclusions are discussed in relation to other published data on errors of measurement in general.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1950

References

REFERENCES

Biggs, R. & MacMillan, R. L. (1948). J. clin. Path. 1, 269, 288.CrossRefGoogle Scholar
Birkelo, C. C., Chamberlain, W. E., Phelps, P. S., Schools, P. E., Zachs, D. and Yerushalmy, J. (1947). Jour. Amer. med. Assoc. 133, 359.CrossRefGoogle Scholar
Carpenter, T. M., Fox, E. L. & Sereque, A. F. (1929). J. biol. Chem. 83, 211.CrossRefGoogle Scholar
Daynes, H. A. (1920). Proc. Roy. Soc. A, 97, 273.Google Scholar
Dingle, E. H. & Pryce, A. W. (1940). Proc. Roy. Soc. B, 129, 468.Google Scholar
Douglas, C. G. & Priestley, J. G. (1924). Human Physiology Oxford.Google Scholar
Fisher, R. A. (1941). Statistical Methods for Research Workers. Edinburgh.Google Scholar
Fisher, R. A. (1942). The Design of Experiments. Edinburgh.Google Scholar
Fisher, R. A. & Yates, F. (1948). Statistical Tables, p. 5 and table 8.Google Scholar
Gemmill, C. L. (1931). Amer. J. Physiol. 98, 135.CrossRefGoogle Scholar
Grove-White, C. W. & Sander, A. G. (1949). (Personal communication.)Google Scholar
Haldane, J. S. (1898). J. Physiol. 22, 465.CrossRefGoogle Scholar
Haldane, J. S. (1912). Methods of Gas Analysis. London.Google Scholar
Hawk, P. B., Oser, B. C. & Summerson, W. H. (1947). Practical Physiological Chemistry, London.Google Scholar
Jones, H. R. (1938). J. R. Statist. Soc. 101, 1.CrossRefGoogle Scholar
Kleitman, N. (1939). Sleep and Wakefulness. Chicago.Google Scholar
Krogh, A. (1920). Biochem. J. 14, 267.CrossRefGoogle Scholar
Lowell-Olsen, H. (1948). Rep. Univ. Wisconsin. C.M. 514.Google Scholar
MacFarlane, R. G. (1945). Spec. Rep. Ser. med. Res. Coun., Lond., no. 252, p. 16.Google Scholar
MacLeod, J. J. R. (1941). Physiology in Modern Medicine. London.Google Scholar
Maskelyne, N. (1799). Astronomical Observations, p. 333.Google Scholar
Myers, C. S. (1906). J. R. anthrop. Inst. 36, 255.Google Scholar
Neyman, J. & Pearson, E. S. (1928). Biometrika, 20A, 175.Google Scholar
Pearson, E. S. (1922). Biometrika, 14, 23.CrossRefGoogle Scholar
Pearson, K. (1901). Philos. Trans. 198, 253.Google Scholar
Peters, J. P. & Van Slyke, D. D. (1932). Quantitative Clinical Chemistry, 2. Methods. London.Google Scholar
Rein, H. (1943). Schr. dtsch. Akad. LuftfahrtForsch. 7, 73.Google Scholar
Renbourn, E. T. (1947). J. Hyg., Camb., 45, 456.Google Scholar
Renbourn, E. T., Angus, T. C., Ellison, J. McK. & Jones, M. S. (1949). J. Hyg., Camb., 47, 1.CrossRefGoogle Scholar
Thorpe, J. F. & Whiteley, M. A. (1938). Thorpe's Dictionary of Applied Chemistry. London.Google Scholar
Tocher, J. F. (1926). Analyst, 51, 338.CrossRefGoogle Scholar
Wiehl, D. C. (1946). Millbank Mem. Fund Quart. 24, 5.CrossRefGoogle Scholar
Yates, F. (1934). J. R. Statist. Soc. Suppl. 1, 217.Google Scholar
Yule, G. U. (1927). J. R. Statist. Soc. 90, 570.CrossRefGoogle Scholar