Skip to main content Accessibility help
×
Home

Risk factors and epidemiologic predictors of blood stream infections with New Delhi Metallo-b-lactamase (NDM-1) producing Enterobacteriaceae

  • B. M. Snyder (a1), B. T. Montague (a1), S. Anandan (a2), A. G. Madabhushi (a1), A. K. Pragasam (a2), V. P. Verghese (a3), V. Balaji (a2) and E. A. F. Simões (a1) (a4)...

Abstract

Carbapenem-resistant Enterobacteriaceae conferred by New Delhi metallo-b-lactamase (NDM-1) resistance mechanism are endemic in India and Southeast Asia. An understanding of risk factors for NDM-1 infections is necessary to guide prevention strategies. We performed a retrospective case-control study of patients admitted at Christian Medical College Hospital, Vellore, India between May 2010 and August 2014 with Klebsiella pneumoniae blood stream infection (BSI). We compared patients with BSI caused by NDM-1 producing strains to two control groups: BSI with other multidrug resistant (MDR) strains and BSI with pan-susceptible strains. The study groups were assessed for risk factors for the outcomes: (1) infection with any MDR strain compared to pan-susceptible; and, (2) infection with NDM-1 strain as compared with other MDR and (3) Mortality. A total of 101 patients with BSI with NDM-1 producing Klebsiella pneumoniae were matched to two groups of controls: 112 with non-NDM-1 MDR strains and 101 with pan-susceptible strains. Medical (OR 10.4) and neonatal (OR 0.7) ICU admission, central venous catheter placement (CVC, OR 7.4) predicted MDR BSI. Prior carbapenem use (OR 8.4) and CVC (OR 4.8) predicted acquisition of an NDM-1 strain. Significant predictors for mortality included ICU stay (OR 3.0), mechanical ventilation (OR 3.2), female gender (OR 2.2), diabetes (OR 0.4). CVC placement, prior carbapenem use and ICU admission were significantly associated with BSI with NDM-1 producing and other MDR strains.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Risk factors and epidemiologic predictors of blood stream infections with New Delhi Metallo-b-lactamase (NDM-1) producing Enterobacteriaceae
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Risk factors and epidemiologic predictors of blood stream infections with New Delhi Metallo-b-lactamase (NDM-1) producing Enterobacteriaceae
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Risk factors and epidemiologic predictors of blood stream infections with New Delhi Metallo-b-lactamase (NDM-1) producing Enterobacteriaceae
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: E. A. F. Simões, E-mail: eric.simoes@ucdenver.edu

Footnotes

Hide All
*

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Patel, G et al. (2015) Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infection Control & Hospital Epidemiology 29, 10991106.
2.Tamma, PD et al. (2017) Comparing the outcomes of patients with carbapenemase-producing and non-carbapenemase-producing carbapenem-resistant enterobacteriaceae bacteremia. Clinical Infectious Diseases 64, 257264.
3.Veeraraghavan, B et al. (2017) Carbapenem resistant Klebsiella pneumoniae isolated from bloodstream infection: Indian experience. Pathogens and Global Health 111, 240246.
4.Yong, D et al. (2009) Characterization of a New Metallo-β-Lactamase Gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial Agents and Chemotherapy 53, 50465054.
5.Poirel, L et al. (2011) Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrobial Agents and Chemotherapy 55, 54035407.
6.Khan, AU, Maryam, L and Zarrilli, R (2017) Structure, Genetics and Worldwide Spread of New Delhi Metallo-beta-lactamase (NDM): a threat to public health. BMC Microbiology 17, 101.
7.van Duin, D and Doi, Y (2017) The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 8, 460469.
8.Carrara, E, Bragantini, D and Tacconelli, E (2018) Combination versus monotherapy for the treatment of infections due to carbapenem-resistant enterobacteriaceae. Current Opinion in Infectious Diseases 31, 594599.
9.Kumar, M et al. (2015) Risk factor analysis in clinical isolates of ESBL and MBL (Including NDM-1) producing Escherichia coli and Klebsiella species in a tertiary care hospital. Journal of Clinical and Diagnostic Research: JCDR 9, Dc08Dc13.
10.Nabarro, LEB et al. (2017) Clinical and bacterial risk factors for mortality in children with carbapenem-resistant Enterobacteriaceae bloodstream infections in India. Pediatric Infectious Disease Journal 36, e161e166.
11.Wang, Q et al. (2016) Risk factors and clinical outcomes for carbapenem-resistant Enterobacteriaceae nosocomial infections. European Journal of Clinical Microbiology & Infectious Diseases 35, 16791689.
12.de Jager, P et al. (2015) Nosocomial outbreak of New Delhi metallo-beta-lactamase-1-producing gram-negative Bacteria in South Africa: a case-control study. PLoS One 10, e0123337.
13.Kim, SY et al. (2014) Characteristics of community-onset NDM-1-producing Klebsiella pneumoniae isolates. Journal of Medical Microbiology 63, 8689.
14.Nordmann, P et al. (2012) Emergence of an autochthonous and community-acquired NDM-1-producing Klebsiella pneumoniae in Europe. Clinical Infectious Diseases 54, 150151.
15.Guerra, B, Fischer, J and Helmuth, R (2014) An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Veterinary Microbiology 171, 290297.
16.Yigit, H et al. (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy 45, 11511161.
17.Poirel, L et al. (2011) Multiplex PCR for the detection of acquired carbapenemase genes. Diagnostic Microbiology and Infectious Disease 70, 119123.
18.Dallenne, C et al. (2010) Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy 65, 490495.
19.Ellington, MJ et al. (2007) Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. Journal of Antimicrobial Chemotherapy 59, 321322.
20.Poirel, L et al. (2011) OXA-163, an OXA-48-related class D beta-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrobial Agents and Chemotherapy 55, 25462551.
21.Nordmann, P, Boulanger, AE and Poirel, L (2012) NDM-4 metallo-beta-lactamase with increased carbapenemase activity from Escherichia coli. Antimicrobial Agents and Chemotherapy 56, 21842186.
22.Parameswaran, R et al. (2011) Intravascular catheter-related infections in an Indian tertiary care hospital. Journal of Infection in Developing Countries 5, 452458.
23.Khan, ID et al. (2017) Device-Associated Healthcare-Associated Infections (DA-HAI) and the caveat of multiresistance in a multidisciplinary intensive care unit. Medical Journal Armed Forces of India 73, 222231.
24.Maamar, E et al. (2016) High prevalence of gut microbiota colonization with broad-spectrum cephalosporin resistant Enterobacteriaceae in a Tunisian Intensive Care Unit. Frontiers in Microbiology 7, 1859.
25.Mittal, G et al. (2016) Risk factors for fecal carriage of carbapenemase producing Enterobacteriaceae among intensive care unit patients from a tertiary care center in India. BMC Microbiology 16, 138.
26.Zmarlicka, MT, Nailor, MD and Nicolau, DP (2015) Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infection and Drug Resistance 8, 297309.
27.Wiskirchen, DE et al. (2014) In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae. Antimicrobial Agents and Chemotherapy 58, 16711677.

Keywords

Risk factors and epidemiologic predictors of blood stream infections with New Delhi Metallo-b-lactamase (NDM-1) producing Enterobacteriaceae

  • B. M. Snyder (a1), B. T. Montague (a1), S. Anandan (a2), A. G. Madabhushi (a1), A. K. Pragasam (a2), V. P. Verghese (a3), V. Balaji (a2) and E. A. F. Simões (a1) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed