Skip to main content Accessibility help
×
Home

Real-time genomic investigation underlying the public health response to a Shiga toxin-producing Escherichia coli O26:H11 outbreak in a nursery

  • J. MORAN-GILAD (a1) (a2) (a3) (a4), A. ROKNEY (a5), D. DANINO (a1) (a6), M. FERDOUS (a7), F. ALSANA (a3), M. BAUM (a5), L. DUKHAN (a3), V. AGMON (a5), E. ANUKA (a5), L. VALINSKY (a5), R. YISHAY (a8), I. GROTTO (a1) (a2), J. W. A. ROSSEN (a4) (a7) and M. GDALEVICH (a1) (a3)...

Summary

Shiga toxin-producing Escherichia coli (STEC) is a significant cause of gastrointestinal infection and the haemolytic-uremic syndrome (HUS). STEC outbreaks are commonly associated with food but animal contact is increasingly being implicated in its transmission. We report an outbreak of STEC affecting young infants at a nursery in a rural community (three HUS cases, one definite case, one probable case, three possible cases and five carriers, based on the combination of clinical, epidemiological and laboratory data) identified using culture-based and molecular techniques. The investigation identified repeated animal contact (animal farming and petting) as a likely source of STEC introduction followed by horizontal transmission. Whole genome sequencing (WGS) was used for real-time investigation of the incident and revealed a unique strain of STEC O26:H11 carrying stx2a and intimin. Following a public health intervention, no additional cases have occurred. This is the first STEC outbreak reported from Israel. WGS proved as a useful tool for rapid laboratory characterization and typing of the outbreak strain and informed the public health response at an early stage of this unusual outbreak.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Real-time genomic investigation underlying the public health response to a Shiga toxin-producing Escherichia coli O26:H11 outbreak in a nursery
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Real-time genomic investigation underlying the public health response to a Shiga toxin-producing Escherichia coli O26:H11 outbreak in a nursery
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Real-time genomic investigation underlying the public health response to a Shiga toxin-producing Escherichia coli O26:H11 outbreak in a nursery
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: J. Moran-Gilad, M.D., M.P.H., Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel. (Email: giladko@post.bgu.ac.il)

References

Hide All
1. Heiman, KE, et al. Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerging Infectious Diseases 2015; 21: 12931301.
2. Karmali, MA. Host and pathogen determinants of verocytotoxin-producing Escherichia coli-associated hemolytic uremic syndrome. Kidney International 2009; 112: S4S7.
3. Locking, ME, et al. Risk factors for sporadic cases of Escherichia coli O157 infection: the importance of contact with animal excreta. Epidemiology and Infection 2001; 127: 215220.
4. Scheutz, F, et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. Journal of Clinical Microbiology 2012; 50: 29512963.
5. Elliott, SJ, et al. The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli . Infection and Immunity 2000; 68: 61156126.
6. Parsons, BD, et al. Detection, characterization, and typing of Shiga toxin-producing Escherichia coli . Frontiers in Microbiology 2016; 7: 478.
7. Franz, E, et al. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. International Journal of Food Microbiology 2014; 187: 5772.
8. Chattaway, MA, et al. Whole genome sequencing for public health surveillance of ShigaToxin-producing Escherichia coli otherthanserogroupO157. Frontiers in Microbiology 2016; 3: 258.
9. Fagan, PK, et al. Detection of Shiga-like toxin (stx1 and stx2), intimin (eaeA), and enterohemorrhagic Escherichia coli (EHEC) hemolysin (EHEC hlyA) genes in animal feces by multiplex PCR. Applied and Environmental Microbiology 1999; 65: 868872.
10. Hoffmann, B, et al. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. Journal of Virological Methods 2006; 136: 200209.
11. Nguyen, TV, et al. Detection and characterization of diarrheagenic Escherichia coli from young children in Hanoi, Vietnam. Journal of Clinical Microbiology 2005; 43: 755760.
12. Olsvik, O. PCR detection of heat-stable, heatlabile, and Shiga-like toxin genes in Escherichia coli . In: Persing, DH, Smith, TF, Tenover, FC, White, TJ, eds. Diagnostic Molecular Microbiology. Principles and Application. Rochester: Mayo Foundation, 1993, pp. 271276.
13. Ferdous, M, et al. Molecular characterization and phylogeny of Shiga toxin-producing E. coli (STEC) isolates obtained from two Dutch regions using whole genome sequencing. Clinical Microbiology and Infection 2016; 22: 642. e1–e9.
14. Wirth, T, et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Molecular Microbiology 2016; 60: 11361151.
15. Israeli Ministry of Health. Notifiable Infectious Diseases in Israel: 60 years of surveillance 1951–2010. Ministry of Health, 2012 (https://www.health.gov.il/PublicationsFiles/Disease1951_2010.pdf).
16. Germinario, C, et al. Community-wide outbreak of haemolytic uraemic syndrome associated with Shiga toxin 2-producing Escherichia coli O26:H11 in southern Italy, summer 2013. Eurosurveillance 2016; 21: pii=30343.
17. Norman, KN, et al. Comparison of whole genome sequences from human and non-human Escherichia coli O26 strains. Frontiers in Cellular Infection and Microbiology 2015; 5: 21.
18. Bielaszewska, M, et al. Enterohemorrhagic Escherichia coli O26:H11/H-: a new virulent clone emerges in Europe. Clinical Infectious Diseases 2013; 56: 13731381.
19. Allerberger, F, et al. Hemolytic-uremic syndrome associated with enterohemorrhagic Escherichia coli O26:H infection and consumption of unpasteurized cow's milk. International Journal of Infectious Diseases 2003; 7: 4245.
20. Boerlin, P, et al. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. Journal of Clinical Microbiology 1999; 37: 497503.
21. Brown, JA, et al. Outbreak of Shiga toxin-producing Escherichia coli serotype O26: H11 infection at a child care center in Colorado. Pediatric Infectious Diseases Journal 2012; 31: 379383.
22. Sonoda, C, et al. An enterohemorrhagic Escherichia coli O26 outbreak at a nursery school in Miyazaki, Japan. Japanese Journal of Infectious Diseases 2008; 61: 9293.
23. Werber, D, et al. A multistate outbreak of Shiga toxin producing Escherichia coli O26:H11 infections in Germany, detected by molecular subtyping surveillance. Journal of Infectious Diseases 2002; 186: 419422.
24. Dallman, T, et al. The utility and public health implications of PCR and whole outbreak of Shiga toxin-producing Escherichia coli serogroup O26:H11. Epidemiology and Infection 2015; 143: 16721680.
25. Kanayama, A, et al. Enterohemorrhagic Escherichia coli outbreaks related to childcare facilities in Japan, 2010–2013. BMC Infectious Diseases 2015; 15: 539.
26. Al-Jader, L, et al. Outbreak of Escherichia coli O157 in a nursery: lessons for prevention. Archives of Diseases of Childhood 1999; 81: 6063.
27. Shah, S, et al. Prolonged fecal shedding of Escherichia coli O157:H7 during an outbreak at a day care center. Clinical Infectious Diseases 1996; 23: 835836.
28. Rowell, S, et al. An outbreak of Shiga toxin-producing Escherichia coli serogroup O157 linked to a lamb-feeding event. Epidemiology and Infection 2016; 144: 24942500.
29. Holmes, A, et al. Utility of whole-genome sequencing of Escherichia coli O157 for outbreak detection and epidemiological surveillance. Journal of Clinical Microbiology 2015; 53: 35653573.
30. Underwood, AP, et al. Public health value of next-generation DNA sequencing of enterohemorrhagic Escherichia coli isolates from an outbreak. Journal of Clinical Microbiology 2013; 51: 232237.
31. Crump, JA, et al. An outbreak of Escherichia coli O157:H7 infections among visitors to a dairy farm. New England Journal of Medicine 2002; 347: 555560.
32. Fremaux, B, et al. Persistence of Shiga toxin-producing Escherichia coli O26 in cow slurry. Letters of Applied Microbiology 2007; 45: 5561.
33. Luna-Gierke, RE, et al. Multiple-aetiology enteric infections involving non-O157 Shiga toxin-producing Escherichia coli – FoodNet, 2001–2010. Zoonoses and Public Health 2014; 61: 492498.
34. Moran-Gilad, J. Whole genome sequencing (WGS) for food-borne pathogen surveillance and control – taking the pulse. Eurosurveillance 2017; 22: pii=30547.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Moran-Gilad et al. supplementary material
Moran-Gilad et al. supplementary material 1

 Unknown (315 KB)
315 KB
WORD
Supplementary materials

Moran-Gilad et al. supplementary material
Moran-Gilad et al. supplementary material 2

 Word (12 KB)
12 KB

Real-time genomic investigation underlying the public health response to a Shiga toxin-producing Escherichia coli O26:H11 outbreak in a nursery

  • J. MORAN-GILAD (a1) (a2) (a3) (a4), A. ROKNEY (a5), D. DANINO (a1) (a6), M. FERDOUS (a7), F. ALSANA (a3), M. BAUM (a5), L. DUKHAN (a3), V. AGMON (a5), E. ANUKA (a5), L. VALINSKY (a5), R. YISHAY (a8), I. GROTTO (a1) (a2), J. W. A. ROSSEN (a4) (a7) and M. GDALEVICH (a1) (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed