Skip to main content Accessibility help
×
Home

Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs

  • W. YU (a1), P. DALE (a2), L. TURNER (a1) and S. TONG (a1)

Summary

Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr W. Yu, School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia. (Email: weiwei.yu@qut.edu.au)

References

Hide All
1. Australian Department of Health and Ageing (ADHA). National Notifiable Diseases Surveillance System (http://www9.health.gov.au/cda/source/Rpt_4.cfm). Accessed 18 January 2013.
2. Harley, D, Sleigh, AC, Ritchie, S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clinical Microbiologic Reviews 2001; 14: 909932.
3. Harley, D, Ritchie, S, Bain, C, Sleigh, AC. Risks for Ross River virus disease in tropical Australia. International Journal of Epidemiology 2005; 34: 548555.
4. McIver, L, et al. A climate-based early warning system to predict outbreaks of Ross River virus disease in the Broome region of Western Australia. Australian and New Zealand Journal of Public Health 2010; 34: 8990.
5. Tong, S, Hu, W, McMichael, AJ. Climate variability and Ross River virus transmission in Townsville Region, Australia, 1985–1996. Tropical Medicine and International Health 2004; 9: 298304.
6. Werner, AK, et al. Environmental drivers of Ross River virus in southeastern Tasmania, Australia: towards strengthening public health interventions. Epidemiology and Infection 2012; 140: 359371.
7. Dwyer, S. Queensland joint strategic framework for mosquito management 2010–2015 (http://www.health.qld.gov.au/mozziediseases/documents/joint_strat_fwk.pdf). Accessed 12 December 2012.
8. Hawkes, RA, et al. A major outbreak of epidemic polyarthritis in New South Wales during the summer of 1983/1984. Medical Journal of Australia 1985; 143: 330333.
9. Boughton, CR. Australian Arboviruses of Medical Importance: A Handbook for General Practitioners and Other Clinicians. Royal Australian College of General Practitioners, Melbourne 1996, pp 67.
10. Mylonas, A, Brown, A, Catthew, T. Natural history of Ross River virus-induced epidemic polyarithritis. Medical Journal of Australia 2002; 177: 356360.
11. Ratnayake, J. The valuation of social and economic cost of mosquito-transmitted Ross River virus. Griffith University (PhD thesis), 2005 (http://trove.nla.gov.au/work/160376622). Accessed 11 November 2012.
12. Woodruff, R, Bambrik, H. Climate change impacts on the burden of Roos River virus disease. Garnaut climate change review. 2008 (http://www.garnautreview.org.au/ca25734e0016a131/WebObj/03-BRossRivervirus/$File/03-B%20Ross%20River%20virus.pdf). Accessed 20 November 2012.
13. Tong, S, Hu, W. Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis. Environmental Health Perspectives 2001; 109: 12711273.
14. Kelly-Hope, LA, Purdie, DM, Kay, BH. Ross River virus disease in Australia, 1886–1998, with analysis of risk factors associated with outbreaks. Journal of Medical Entomology 2004; 41: 133150.
15. Russell, RC. Ross River virus:ecology and distribution. Annual Review of Entomology 2002; 47: 131.
16. Russell, RC. Ross River virus: disease trends and vector ecology in Australia. Bulletin of the Society for Vector Ecology 1994; 19: 7381.
17. Mackenzie, JS, et al. Arboviruses causing human disease in the Australasian zoogeographic region. Archives of Virology 1994; 136: 448467.
18. Harley, D, et al. Ross River virus disease in troical Queensland: evolution of rheumatic manifestations in an inception cohort followed for six months. Medical Journal of Australia 2003; 177: 352355.
19. McMichael, AJ, Woodruff, RE, Hales, S. Climate change and human health: present and future risks. Lancet 2006; 367: 859869.
20. Rogers, DJ, Randolph, SE. Climate change and vector-borne diseases. Advances in Parasitology 2006; 62: 345381.
21. Costello, A, et al. Managing the health effects of climate change. Lancet and University College London Institute for Global Health Commission. Lancet 2009; 373: 16931733.
22. Hu, W, et al. Exploratory spatial analysis of social and environmental factors associated with the incidence of Ross River virus in Brisbane, Australia. American Journal of Tropical Medicine and Hygiene 2007; 76: 814819.
23. Tong, S, et al. Climate variability, social and environmental factors, and ross river virus transmission: research development and future research needs. Environmental Health Perspectives 2008; 116: 15911597.
24. Bambrick, H, Woodruff, R. Climate change impacts on Ross river virus in Australia. Journal of Epidemiology and Community Health 2011; 65: A323.
25. Bi, P, Parton, KA. Climate variations and the transmission of Ross River virus infection in coastal and inland region of Queensland: an analysis from Townsville and Toowoomba. Environmental Health 2003; 3: 7379.
26. Darren, W, et al. Spatial temporal modelling of Ross River virus in Queensland. In: Zerger, A, Argent, R, eds. MODSIM 2005 International Congress on Modelling and Simulation: Advances and Applications for Management and Decision Making, 1215 December 2005, Australia, Victoria, Melbourne.
27. Gatton, ML, Kay, BH, Ryan, PA. Environmental predictors of Ross River virus disease outbreaks in Queensland, Australia. American Journal of Tropical Medicine and Hygiene 2005; 72: 792–729.
28. Hu, W, et al. Development of a predictive model for ross river virus disease in Brisbane, Australia. American Journal of Tropical Medicine and Hygiene 2004; 71: 129137.
29. Hu, W, et al. Rainfall, mosquito density and transmission of Ross River virus: a time-series forecasting model. Ecological Modelling 2006; 196: 505514.
30. Hu, W, et al. Bayesian spatiotemporal analysis of socio-ecologic drivers of Ross River virus transmission in Queensland, Australia. American Journal of Tropical Medicine and Hygiene 2010; 83: 722728.
31. Tong, S, Hu, W. Different responses of Ross River virus to climate variability between coastline and inland cities in Queensland, Australia. Occupational and Environmental Medicine 2002; 59: 739744.
32. Tong, S, et al. Climatic, high tide and vector variables and the transmission of Ross River virus. Internal Medicine Journal 2005; 35: 677680.
33. Woodruff, RE, et al. Predicting Ross River virus epidemics from regional weather data. Epidemiology 2002; 13: 384393.
34. Woodruff, RE, et al. Early warning of Ross River virus epidemics: combining surveillance data on climate and mosquitoes. Epidemiology 2006; 17: 569575.
35. Bi, P, et al. Climate variability and Ross River virus infections in Riverland South Australia, 1992–2004. Epidemiology and Infection 2009; 137: 14861493.
36. Williams, CR, Fricker, SR, Kokkinn, MJ. Environmental and entomological factors determining Ross River virus activity in the River Murray Valley of South Australia. Australian and New Zealand Journal of Public Health 2009; 33: 284288.
37. Jacups, SP, et al. Predictive indicators for Ross River virus infection in the Darwin area of tropical northern Australia, using long-term mosquito trapping data. Tropical Medicine and International Health 2008; 13: 943952.
38. Jacups, SP, Whelan, PI, Currie, BJ. Ross river virus and Barmah Forest virus infections:A review of history, ecology, and predictive models, with implications for tropical Northern Australia. Vector-borne and Zoonotic Diseases 2008; 8: 283297.
39. Inter-governmental panel on climate change (IPCC). Climate change 2007: synthesis report. summary for policymakers (http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml). Accessed 14 November 2012.
40. Commonwealth Scientific and Industrial Research Organisation (CSIRO). Climate change in Australia: technical report 2007 (http://www.csiro.au/en/Organisation-Structure/Divisions/Marine-Atmospheric-Research/Climate-Change-Technical-Report-2007.aspx). Accessed 15 November 2012.
41. Semenza, JC, Menne, B. Climate change and infectious diseases in Europe. Lancet Infectious Diseases 2009; 9: 365375.
42. Sutherst, RW. Global change and human vulnerability to vector-borne diseases. Clinical Microbiology Reviews 2004; 17: 136173.
43. Bulto, PL, et al. Assessment of human health vulnerability to climate variability and change in Cuba. Environmental Health Perspectives 2006; 114: 19421949.
44. Patz, JA, Khaliq, M. MSJAMA: global climate change and health: challenges for future practitioners. Journal of the American Medical Association 2002; 287: 22832284.

Keywords

Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs

  • W. YU (a1), P. DALE (a2), L. TURNER (a1) and S. TONG (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed