Skip to main content Accessibility help
×
Home

Potential coverage of circulating HPV types by current and developing vaccines in a group of women in Bosnia and Herzegovina with abnormal Pap smears

  • I. SALIMOVIĆ-BEŠIĆ (a1) and M. HUKIĆ (a2) (a3)

Summary

The objectives of this study were to identify human papillomavirus (HPV) genotypes in a group of Bosnian-Herzegovinian women with abnormal cytology and to assess their potential coverage by vaccines. HPVs were identified by multiplex real-time PCR test (HPV High Risk Typing Real-TM; Sacace Biotechnologies, Italy) of 105 women with an abnormal cervical Pap smear and positive high-risk (HR) HPV DNA screening test. The most common genotypes in the study were HPV-16 (32·6%, 48/147), HPV-31 (14·3%, 21/147), HPV-51 (9·5%, 14/147) and HPV-18 (7·5%, 11/147). The overall frequency of HR HPV-16 and/or HPV-18, covered by currently available vaccines [Gardasil® (Merck & Co., USA) and Cervarix®; (GlaxoSmithKline, UK)] was lower than the overall frequency of other HPVs detected in the study (40·1%, 59/174, P = 0·017). Group prevalence of HR HPVs targeted by a nine-valent vaccine in development (code-named V503) was higher than total frequency of other HPVs detected (68·0%, 100/147, P < 0·001). Development of cervical cytological abnormalities was independent of the presence of multiple infections (χ 2 = 0·598, P = 0·741). Compared to other HPVs, dependence of cervical diagnosis and HPV-16, -18 (P = 0·008) and HPV-16, -18, -31 (P = 0·008) infections were observed. Vaccines targeting HR HPV-16, -18 and -31 might be an important tool in the prevention of cervical disease in Bosnia and Herzegovina.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Potential coverage of circulating HPV types by current and developing vaccines in a group of women in Bosnia and Herzegovina with abnormal Pap smears
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Potential coverage of circulating HPV types by current and developing vaccines in a group of women in Bosnia and Herzegovina with abnormal Pap smears
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Potential coverage of circulating HPV types by current and developing vaccines in a group of women in Bosnia and Herzegovina with abnormal Pap smears
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr I. Salimović-Bešić, University Clinical Centre – Sarajevo, Department of Clinical Microbiology, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina. (Email: irma.salimovic_besic@yahoo.com)

References

Hide All
1. Poljak, M, et al. Human papillomavirus prevalence and type-distribution, cervical cancer screening practices and current status of vaccination implementation in Central and Eastern Europe. Vaccine 2013; 31 (Suppl. 7): H59–70.
2. Rogovskaya, SI, et al. Human papillomavirus prevalence and type-distribution, cervical cancer screening practices and current status of vaccination implementation in Russian Federation, the Western countries of the former Soviet Union, Caucasus region and Central Asia. Vaccine 2013; 31 (Suppl. 7): H46–58.
3. Poljak, M, et al. Recommendations for cervical cancer prevention in Central and Eastern Europe and Central Asia. Vaccine 2013; 31 (Suppl. 7): H80–82.
5. Salimović-Bešić, I, et al. Comparison of the detection of HPV-16, 18, 31, 33 and 45 by type-specific DNA- and E6/E7 mRNA- based assays of HPV DNA positive women with abnormal Pap smears. Journal of Virological Methods 2013; 194: 222228.
6. Yuce, K, et al. Detection and genotyping of cervical HPV with simultaneous cervical cytology in Turkish women: a hospital-based study. Archives of Gynecology and Obstetrics 2012; 286: 203208.
7. Vranic, S, Gravitt, PE, Hardick, A. Detection of human papillomavirus by PCR genotyping and immunostaining in a population of Bosnian women. Folia Medica Facultatis Medicinae Universitatis Saraeviensis 2008; 43: 1522.
8. Milutin-Gasperov, N, et al. Retrospective study of the prevalence of high-risk human papillomaviruses among Croatian women. Collegium Antropologicum 2007; 31: 8996.
9. Grahovac, M, et al. Prevalence of human papillomavirus among Croatian women attending regular gynecological visit. Collegium Antropologicum 2007; 31: 7377.
10. Guan, P, et al. Human papillomavirus types in 115,789 HPV-positive women: a meta-analysis from cervical infection to cancer. International Journal of Cancer 2012; 131: 23492359.
11. Sargent, A, et al. A, Prevalence of type-specific HPV infection by age and grade of cervical cytology: data from the ARTISTIC trial. British Journal of Cancer 2008; 98: 17041709.
12. de Sanjose, S, et al. Retrospective international survey and HPV Time Trends Study Group. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncology 2010; 11: 10481056.
13. Serrano, B, et al. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infectious Agents and Cancer 2012; 7: 38.
14. Salimović-Bešić, I, Poljak, M, Kocjan, B. HPV genotypes in repeated Pap II smears of group of women in Slovenia. Medicinski Arhiv 2006; 60: 712.
15. Liaw, KL, et al. A prospective study of human papillomavirus (HPV) type 16 DNA detection by polymerase chain reaction and its association with acquisition and persistence of other HPV types. Journal of Infectious Diseases 2001; 183: 815.
16. Thomas, KK, et al. Concurrent and sequential acquisition of different genital human papillomavirus types. Journal of Infectious Diseases 2000; 182: 10971102.
17. Mendez, F, et al. Cervical coinfection with human papillomavirus (HPV) types and possible implications for the prevention of cervical cancer by HPV vaccines. Journal of Infectious Diseases 2005; 192: 11581165.
18. Plummer, M, et al. A 2-year prospective study of human papillomavirus persistence among women with a cytological diagnosis of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion. Journal of Infectious Diseases 2007; 195: 15821589.
19. Salimović-Bešić, I, et al. Prevalence of human papillomavirus infection in Slovenian women with repeated Pap II smears. Medicinski Arhiv 2005; 59: 4751.
20. IARC. Monographs on the evaluation of carcinogenic risks to humans, Volume 90: Human Papillomaviruses. Lyon: International Agency for Research on Cancer, 2007.
21. Vaccarella, S, et al. Sexual behavior, condom use and HPV: pooled analysis of the International Agency for Research on Cancer HPV Prevalence Surveys. Cancer Epidemiology, Biomarkers & Prevention 2006; 15: 326333.
22. Winer, RL, et al. Condom use and the risk of genital human papillomavirus infection in young women. New England Journal of Medicine 2006; 354: 26452654.
23. Kleter, B, et al. Development and clinical evaluation of highly sensitive PCR-reverse hybridization line probe assay for detection and identification of anogenital human papillomavirus. Journal of Clinical Microbiology 1999; 37: 25082517.
24. Lie, AK, et al. DNA versus RNA-based methods for human papillomavirus detection in cervical neoplasia. Gynecologic Oncology 2005; 97: 908915.
25. Castle, PE, et al. Restricted cross-reactivity of hybrid capture 2 with nononcogenic human papillomavirus types. Cancer Epidemiology, Biomarkers & Prevention 2002; 11: 13941399.
26. Poljak, M, et al. Hybrid capture II HPV test detects at least 15 human papillomavirus genotypes not included in its current high-risk probe cocktail. Journal of Clinical Virology 2002; 25: S89–97.

Keywords

Related content

Powered by UNSILO

Potential coverage of circulating HPV types by current and developing vaccines in a group of women in Bosnia and Herzegovina with abnormal Pap smears

  • I. SALIMOVIĆ-BEŠIĆ (a1) and M. HUKIĆ (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.