Skip to main content Accessibility help
×
Home

Interpreting the transmissibility of the avian influenza A(H7N9) infection from 2013 to 2015 in Zhejiang Province, China

  • K. C. CHONG (a1) (a2), X. WANG (a3), S. LIU (a3), J. CAI (a3), X. SU (a1), B. C. ZEE (a1) (a2), G. TAM (a1), M. H. WANG (a1) (a2) and E. CHEN (a3)...

Summary

Three epidemic waves of human influenza A(H7N9) were documented in several different provinces in China between 2013 and 2015. With limited understanding of the potential for human-to-human transmission, it was difficult to implement control measures efficiently or to inform the public adequately about the application of interventions. In this study, the human-to-human transmission rate for the epidemics that occurred between 2013 and 2015 in Zhejiang Province, China, was analysed. The reproduction number (R), a key indicator of transmission intensity, was estimated by fitting the number of infections from poultry to humans and from humans to humans into a mathematical model. The posterior mean R for human-to-human transmission was estimated to be 0·27, with a 95% credible interval of 0·14–0·44 for the first wave, whereas the posterior mean Rs decreased to 0·15 in the second and third waves. Overall, these estimates indicate that a human H7N9 pandemic is unlikely to occur in Zhejiang. The reductions in the viral transmissibility and the number of poultry-transmitted infections after the first epidemic may be attributable to the various intervention measures taken, including changes in the extent of closures of live poultry markets.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interpreting the transmissibility of the avian influenza A(H7N9) infection from 2013 to 2015 in Zhejiang Province, China
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interpreting the transmissibility of the avian influenza A(H7N9) infection from 2013 to 2015 in Zhejiang Province, China
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interpreting the transmissibility of the avian influenza A(H7N9) infection from 2013 to 2015 in Zhejiang Province, China
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Author for correspondence: Professor M. H. Wang, Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China. (Email: maggiew@cuhk.edu.hk) [M. H. Wang] (Email: zjcdccfs@126.com) [E. Chen]

References

Hide All
1. Watanabe, T, et al. Pandemic potential of avian influenza A(H7N9) viruses. Trends in Microbiology 2014; 22: 623631.
2. World Health Organization. Global Alert and Response (GAR). Human infection with avian influenza A(H7N9) virus – update, 11 August 2013. (http://www.who.int/csr/don/2013_08_11/en/). Accessed 2 January 2015.
3. Chen, E, et al. Human infection with avian influenza A(H7N9) virus re-emerges in China in winter 2013. Eurosurveillance 2013; 18: 20616.
4. World Health Organization. Global Alert and Response (GAR). Human infection with avian influenza A(H7N9) virus – update, 3 March 2014. (http://www.who.int/csr/don/2014_03_03/en/). Accessed 2 January 2015.
5. World Health Organization. WHO risk assessment of human infection with avian influenza A(H7N9) virus, 2 October 2014 (http://www.who.int/influenza/human_animal_interface/influenza_h7n9/riskassessment_h7n9_2Oct14.pdf). Accessed 2 January 2015.
6. Chowell, G, et al. Transmission potential of influenza A/H7N9, February–May 2013, China. BMC Medicine 2013; 11: 214.
7. Nishiura, H, Mizumoto, K, Ejima, K. How to interpret the transmissibility of novel influenza A(H7N9): an analysis of initial epidemiological data of human cases from China. Theoretical Biology and Medical Modelling 2013; 10: 30.
8. Kucharski, A, et al. Distinguishing between reservoir exposure and human-to-human transmission for emerging pathogens using case onset data. PLoS Current Outbreaks. Published online 7 March 2014. doi:10.1371/currents.outbreaks.e1473d9bfc99d 080ca242139a06c455f.
9. Xiao, Y, et al. Transmission potential of the novel avian influenza A(H7N9) infection in mainland China. Journal of Theoretical Biology 2014; 352: 15.
10. National Health and Family Planning Commission of the People's Republic of China. Chinese guideline of diagnosis and treatment for human infections with the avian influenza A(H7N9) virus (2nd edn, 2013) (http://www.nhfpc.gov.cn/yzygj/s3585u/201304/7e2ad4cdf98b4e2285eab1c15ded8370.shtml). Accessed 29 December 2014.
11. National Health and Family Planning Commission of the People's Republic of China. Chinese guideline of diagnosis and treatment for human infections with the avian influenza A(H7N9) virus (2014 edition) (http://www.nhfpc.gov.cn/yzygj/s3593g/201401/3f69fe196ecb4cfc8a2d6d96182f8b22.shtml). Accessed 29 December 2014.
12. Wang, XY, et al. Epidemiology of human infections with avian influenza A(H7N9) virus in the two waves before and after October 2013 in Zhejiang province, China. Epidemiology and Infection 2015; 143: 18391845.
13. Kermack, WO, McKendrick, AG. Contributions to the mathematical theory of epidemics, part I. Proceedings of the Royal Society of London, Series A 1927; 115: 700721.
14. Diekmann, O, Heesterbeek, JAP. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. New York: Wiley, 2000.
15. Vong, S. Editorial commentary: some perspectives regarding risk factors for A(H7N9) influenza virus infection in humans. Clinical Infectious Diseases 2014; 59: 795797.
16. Zhang, J, et al. Determination of original infection source of H7N9 avian influenza by dynamical model. Scientific Reports 2014; 4: 4846.
17. Chong, KC, Zee, BC. Modeling the impact of air, sea, and land travel restrictions supplemented by other interventions on the emergence of a new influenza pandemic virus. BMC Infectious Diseases 2012; 12: 309.
18. Chong, KC, et al. Identifying meteorological drivers for the seasonal variations of influenza infections in a subtropical city, Hong Kong. International Journal of Environmental Research and Public Health 2015; 12: 15601576.
19. Hu, J, et al. Limited human-to-human transmission of avian influenza A(H7N9) virus, Shanghai, China, March to April 2013. Eurosurveillance 2014; 19: 20838.
20. Hsieh, YH, et al. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China. PLoS ONE 2014; 9: e111834.
21. Yu, H, et al. Impact of live poultry market closure in reducing bird-to-human transmission of avian influenza A(H7N9) virus: an ecological study. Lancet 2014; 383: 541548.
22. Gilbert, M, et al. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nature Communications 2014; 5: 4116.
23. Wu, P, et al. Poultry market closures and human infection with influenza A(H7N9) virus, China, 2013–14. Emerging Infectious Diseases 2014; 20: 1891.

Keywords

Interpreting the transmissibility of the avian influenza A(H7N9) infection from 2013 to 2015 in Zhejiang Province, China

  • K. C. CHONG (a1) (a2), X. WANG (a3), S. LIU (a3), J. CAI (a3), X. SU (a1), B. C. ZEE (a1) (a2), G. TAM (a1), M. H. WANG (a1) (a2) and E. CHEN (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed