Skip to main content Accessibility help
×
Home

The impact of heptavalent pneumococcal conjugate vaccine on the incidence of childhood community-acquired pneumonia and bacteriologically confirmed pneumococcal pneumonia in Japan

  • S. NAITO (a1), J. TANAKA (a1), K. NAGASHIMA (a2), B. CHANG (a3), H. HISHIKI (a1), Y. TAKAHASHI (a1), J. OIKAWA (a1), K. NAGASAWA (a1), N. SHIMOJO (a1) and N. ISHIWADA (a4)...

Summary

Heptavalent pneumococcal conjugate vaccine (PCV7) was introduced to Japan in 2010. We investigated the impact of PCV7 on childhood community-acquired pneumonia (CAP) and pneumococcal pneumonia (PP). Children aged <5 years living in Chiba city, Japan, who were admitted to hospitals were enrolled to estimate the incidence of CAP based on the mid-year population. PP was determined by the presence of Streptococcus pneumoniae in cultured blood and/or sputum samples of CAP patients. The incidence of CAP and S. pneumoniae isolated from PP patients was compared before (April 2008–March 2009) and after (April 2012–March 2013) the introduction of PCV7 immunization. The annual incidence of CAP was reduced [incidence rate ratio 0·81, 95% confidence interval (CI) 0·73–0·90]. When comparing post-vaccine with pre-vaccine periods, the odds ratio for PP incidence was 0·60 (95% CI 0·39–0·93, P = 0·024). PCV7-covered serotypes markedly decreased (66·6% in pre-vaccine vs. 15·6% in post-vaccine, P < 0·01), and serotypes 6C, 15A, 15C and 19A increased. Multidrug-resistant international clones in the pre-vaccine period (Spain6B-2/ST90, Taiwan19F-14/ST236) decreased, while Sweden15A-25/ST63 was the dominant clone in the post-vaccine period. A significant reduction in the incidence of both CAP hospitalizations and culture-confirmed PP of vaccine serotypes was observed at 2 years after PCV7 vaccination.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The impact of heptavalent pneumococcal conjugate vaccine on the incidence of childhood community-acquired pneumonia and bacteriologically confirmed pneumococcal pneumonia in Japan
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The impact of heptavalent pneumococcal conjugate vaccine on the incidence of childhood community-acquired pneumonia and bacteriologically confirmed pneumococcal pneumonia in Japan
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The impact of heptavalent pneumococcal conjugate vaccine on the incidence of childhood community-acquired pneumonia and bacteriologically confirmed pneumococcal pneumonia in Japan
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr S. Naito, Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, Japan 260-0856. (Email: sachibonne@yahoo.co.jp)

References

Hide All
1. McIntosh, K. Community-acquired pneumonia in children. New England Journal of Medicine 2002; 346: 429437.
2. Grijalva, CG, et al. Decline in pneumonia admissions after routine childhood immunisation with pneumococcal conjugate vaccine in the USA: a time-series analysis. Lancet 2007; 369: 11791186.
3. De, Wals P, et al. Pneumonia after implementation of the pneumococcal conjugate vaccine program in the province of Quebec, Canada. Pediatric Infectious Disease Journal 2008; 27: 963968.
4. Hortal, M, et al. Hospitalized children with pneumonia in Uruguay: pre and post introduction of 7- and 13-valent pneumococcal conjugated vaccines into the National Immunization Program. Vaccine 2012; 30: 49344938.
5. Poehling, KA, et al. Invasive pneumococcal disease among infants before and after introduction of pneumococcal conjugate vaccine. Journal of the American Medical Association 2006; 295: 16681674.
6. Esposito, S, et al. Bacteremic pneumococcal community-acquired pneumonia in children less than 5 years of age in Italy. Pediatric Infectious Disease Journal 2012; 31: 705710.
7. Chappuy, H, et al. Nasopharyngeal carriage of individual Streptococcus pneumoniae serotypes during pediatric radiologically confirmed community acquired pneumonia following PCV7 introduction in Switzerland. BMC Infectious Diseases 2013; 13: 357.
8. Whitney, CG, et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. New England Journal of Medicine 2003; 348: 17371746.
9. Hickey, RW, Bowman, MJ, Smith, GA. Utility of blood cultures in pediatric patients found to have pneumonia in the emergency department. Annals of Emergency Medicine 1996; 27: 721725.
10. Cao, LD, et al. Value of washed sputum gram stain smear and culture for management of lower respiratory tract infections in children. Journal of Infection and Chemotherapy 2004; 10: 3136.
11. Uehara, S, et al. Japanese guidelines for the management of respiratory infectious diseases in children 2007 with focus on pneumonia. Pediatrics International 2011; 53: 264276.
12. Ishiwada, N, et al. The incidence of pediatric invasive Haemophilus influenzae and pneumococcal disease in Chiba prefecture, Japan before and after the introduction of conjugate vaccines. Vaccine 2014; 32: 54255431.
13. Tanaka, J, et al. Incidence of childhood pneumonia and serotype and sequence-type distribution in Streptococcus pneumoniae isolates in Japan. Epidemiology and Infection 2012; 140: 11111121.
14. Japanese census data for Chiba city. (http://www.city.chiba.jp/sogoseisaku/sogoseisaku/toukei). Accessed 20 August 2014.
15. Woodward, M. Epidemiology: Study Design and Data Analysis, 3rd edn. Boca Raton: Chapman and Hall/CRC Press, 2013, pp. 910.
16. Enright, MC, Spratt, BG. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 1998; 144: 30493060.
17. Heinze, G, Schemper, M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21: 24092419.
18. Scott, JR, et al. Impact of more than a decade of pneumococcal conjugate vaccine use on carriage and invasive potential in Native American communities. Journal of Infectious Diseases 2012; 205: 280288.
19. Griffin, MR, Grijalva, CG. Hospitalizations after a decade of pneumococcal vaccination. New England Journal of Medicine 2013; 369: 16621663.
20. Madhi, SA, et al. The burden of childhood pneumonia in the developed world: a review of the literature. Pediatric Infectious Disease Journal 2013; 32: e119127.
21. Kaplan, SL, et al. Early trends for invasive pneumococcal infections in children after the introduction of the 13-valent pneumococcal conjugate vaccine. Pediatric Infectious Disease Journal 2013; 32: 203207.
22. Elemraid, MA, et al. Impact of the 7-valent pneumococcal conjugate vaccine on the incidence of childhood pneumonia. Epidemiology and Infection 2013; 141: 16971704.
23. Pilishvili, T, et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. Journal of Infectious Diseases 2010; 201: 3241.
24. Brueggemann, AB, et al. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. Journal of Infectious Diseases 2003; 187: 14241432.
25. Oikawa, J, et al. Changes in nasopharyngeal carriage of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis among healthy children attending a day-care centre before and after official financial support for the 7-valent pneumococcal conjugate vaccine and H. influenzae type b vaccine in Japan. Journal of Infection and Chemotherapy 2014; 20: 146149.
26. Park, SY, et al. Invasive pneumococcal infections among vaccinated children in the United States. Journal of Pediatrics 2010; 156: 478483. e472.
27. Millar, EV, et al. Pre- and post-conjugate vaccine epidemiology of pneumococcal serotype 6C invasive disease and carriage within Navajo and White Mountain Apache communities. Clinical Infectious Diseases 2010; 51: 12581265.
28. Steens, A, et al. Prompt effect of replacing the 7-valent pneumococcal conjugate vaccine with the 13-valent vaccine on the epidemiology of invasive pneumococcal disease in Norway. Vaccine 2013; 31: 62326238.
29. Ricketson, LJ, et al. Trends in asymptomatic nasopharyngeal colonization with Streptococcus pneumoniae after introduction of the 13-valent pneumococcal conjugate vaccine in Calgary, Canada. Pediatric Infectious Disease Journal 2014; 33: 724730.
30. Hackel, M, et al. Serotype prevalence and antibiotic resistance in Streptococcus pneumoniae clinical isolates among global populations. Vaccine 2013; 31: 48814887.
31. Stephens, DS, et al. Incidence of macrolide resistance in Streptococcus pneumoniae after introduction of the pneumococcal conjugate vaccine: population-based assessment. Lancet 2005; 365: 855863.
32. Hyde, TB, et al. Macrolide resistance among invasive Streptococcus pneumoniae isolates. Journal of the American Medical Association 2001; 286: 18571862.
33. Sugiura, H, et al. Prescription surveillance and polymerase chain reaction testing to identify pathogens during outbreaks of infection. BioMed Research International 2013; 2013: 746053.
34. Kohno, S. Clinical assessment of tosufloxacin tosilate. Journal of Infection and Chemotherapy 2002; 8: 1927.
35. Vanderkooi, OG, et al. Predicting antimicrobial resistance in invasive pneumococcal infections. Clinical Infectious Diseases 2005; 40: 12881297.
36. Kang, CI, et al. Association of levofloxacin resistance with mortality in adult patients with invasive pneumococcal diseases: a post hoc analysis of a prospective cohort. Infection 2013; 41: 151157.
37. Okada, T, et al. Rapid effectiveness of minocycline or doxycycline against macrolide-resistant Mycoplasma pneumoniae infection in a 2011 outbreak among Japanese children. Clinical Infectious Diseases 2012; 55: 16421649.
38. Cherian, T, et al. Standardized interpretation of paediatric chest radiographs for the diagnosis of pneumonia in epidemiological studies. Bulletin of the World Health Organization 2005; 83: 353359.
39. Dagan, R, et al. Comparative immunogenicity and efficacy of 13-valent and 7-valent pneumococcal conjugate vaccines in reducing nasopharyngeal colonization: a randomized double-blind trial. Clinical Infectious Diseases 2013; 57: 952962.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed