Skip to main content Accessibility help
×
Home

High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence

  • C. SCHULZE (a1), K. HEUNER (a2), K. MYRTENNÄS (a3), E. KARLSSON (a3), D. JACOB (a2), P. KUTZER (a1), K. GROßE (a4), M. FORSMAN (a3) and R. GRUNOW (a2)...

Summary

In Germany tularemia is a re-emerging zoonotic disease. Therefore, we investigated wild animals and environmental water samples for the presence and phylogenetic diversity of Francisella tularensis in the poorly studied Berlin/Brandenburg region. The phylogenomic analysis of three isolates from wild animals revealed three new subclades within the phylogenetic tree of F. tularensis [B.71 from a raccoon dog (Nyctereutes procyonoides); B.74 from a red fox (Vulpes vulpes), and B.75 from a Eurasian beaver (Castor fiber albicus)]. The results from histological, PCR, and genomic investigations on the dead beaver showed that the animal suffered from a systemic infection. Indications were found that the bacteria were released from the beaver carcass into the surrounding environment. We demonstrated unexpectedly high and novel phylogenetic diversity of F. tularensis in Germany and the fact that the bacteria persist in the environment for at least one climatic season. These findings support a broader host species diversity than previously known regarding Germany. Our data further support the assumption derived from previous serological studies of an underestimated frequency of occurrence of the pathogen in the environment and in wild animals. F. tularensis was isolated from animal species not previously reported as natural hosts in Germany.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Professor R. Grunow, Centre for Biological Threats and Special Pathogens, Division 2 (ZBS 2), Highly Pathogenic Microorganisms, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany. (Email: grunowr@rki.de)

References

Hide All
1. Ellis, J, et al. Tularemia. Clinical Microbiology Reviews 2002; 15: 631646.
2. Saslaw, S, et al. Tularemia vaccine study. I. Intracutaneous challange. Archives of Internal Medicine 1961; 107: 689701.
3. Penn, R. Francisella tularensis (tularemia). In: Mandell, GL, Bennet, JE, Dolin, R (eds). Mandell, Douglas and Bennett́s Principles and Practice of Infectious Diseases. Elsevier/Churchill Livingstone, Philadelphia, 2010, pp. 29272937.
4. Svensson, K, et al. Landscape epidemiology of tularemia outbreaks in Sweden. Emerging Infectious Diseases 2009; 15: 19371947.
5. Svensson, K, et al. A real-time PCR array for hierarchical identification of Francisella isolates. PLoS ONE 2009; 4: e8360.
6. Vogler, AJ, et al. Phylogeography of Francisella tularensis: global expansion of a highly fit clone. Journal of Bacteriology 2009; 191: 24742484.
7. Vogler, AJ, et al. An optimized, multiplexed multi-locus variable-number tandem repeat analysis system for genotyping Francisella tularensis . Letters in Applied Microbiology 2009; 48: 140144.
8. Origgi, FC, Frey, J, Pilo, P. Characterisation of a new group of Francisella tularensis subsp. holarctica in Switzerland with altered antimicrobial susceptibilities, 1996 to 2013. European Surveillance 2014; 24; 19.
9. Jenzora, A, et al. Seroprevalence study of Francisella tularensis among hunters in Germany. FEMS Immunology and Medical Microbiology 2008; 53: 183189.
10. Kaysser, P, et al. Re-emergence of tularemia in Germany: presence of Francisella tularensis in different rodent species in endemic areas. BMC Infectious Diseases 2008; 8: 157.
11. Splettstoesser, WD, et al. Tularemia in Germany: the tip of the iceberg? Epidemiology and Infection 2009; 137: 736743.
12. Gehringer, H, et al. Presence of an emerging subclone of Francisella tularensis holarctica in Ixodes ricinus ticks from south-western Germany. Ticks and Tick-Borne Diseases 2013; 4: 93100.
13. Muller, W, et al. German Francisella tularensis isolates from European brown hares (Lepus europaeus) reveal genetic and phenotypic diversity. BMC Microbiology 2013; 13: 61.
14. Otto, P, et al. Serological investigation of wild boars (Sus scrofa) and red foxes (Vulpes vulpes) as indicator animals for circulation of Francisella tularensis in Germany. Vector-Borne and Zoonotic Diseases 2014; 14: 4651.
15. Kuehn, A, et al. Tularaemia seroprevalence of captured and wild animals in Germany: the fox (Vulpes vulpes) as a biological indicator. Epidemiology and Infection 2013; 141: 833840.
16. Nattermann, H, et al. First isolation of Francisella tularensis subspecies holarctica from foxes (Vulpes vulpes) in Germany. 6th International Conference on Tularemia 2009, Berlin, 13–16 September 2009 (http://www.tularemia-network.com/), P1–43.
17. Becker, S, et al. Successful re-evaluation of broth medium T for the growth of Francisella tularensis ssp. and other highly pathogenic bacteria. Journal of Microbiological Methods 2016; 121: 57.
18. Forsman, M, Sandstrom, G, Sjostedt, A. Analysis of 16S ribosomal DNA sequences of Francisella strains and utilization for determination of the phylogeny of the genus and for identification of strains by PCR. International Journal of Systematic Bacteriology 1994; 44: 3846.
19. Kirchner, S, et al. Pentaplexed quantitative real-time PCR assay for the simultaneous detection and quantification of botulinum neurotoxin-producing clostridia in food and clinical samples. Applied and Environmental Microbiology 2010; 76: 43874395.
20. Broekhuijsen, M, et al. Genome-wide DNA microarray analysis of Francisella tularensis strains demonstrates extensive genetic conservation within the species but identifies regions that are unique to the highly virulent F. tularensis subsp. tularensis . Journal of Clinical Microbiology 2003; 41: 29242931.
21. Johansson, A, et al. Worldwide genetic relationships among Francisella tularensis isolates determined by multiple-locus variable-number tandem repeat analysis. Journal of Bacteriology 2004; 186: 58085818.
22. Simpson, JT, et al. ABySS: a parallel assembler for short read sequence data. Genome Research 2009; 19: 11171123.
23. Tamura, K, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 2011; 28: 27312739.
24. Nei, M, Kumar, S. Molecular Evolution and Phylogenetics. Oxford University Press, New York, 2000.
25. Lärkeryd, A, et al. CanSNPer: a hierarchical genotype classifier of clonal pathogens. Bioinformatics 2014; 30: 17621764.
26. Birdsell, DN, et al. Francisella tularensis subsp. novicida isolated from a human in Arizona. BMC Research Notes 2009; 2: 223.
27. Chanturia, G, et al. Phylogeography of Francisella tularensis subspecies holarctica from the country of Georgia. BMC Microbiology 2011; 11: 139.
28. Gyuranecz, M, et al. Phylogeography of Francisella tularensis subsp. holarctica, Europe. Emerging Infectious Diseases 2012; 18: 290293.
29. Karlsson, E, et al. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environmental Microbiology 2013; 15: 634645.
30. Karadenizli, A, et al. Genomic analyses of Francisella tularensis strains confirm disease transmission from drinking water sources, Turkey, 2008, 2009 and 2012. Eurosurveillance 2015; 20.
31. Sissonen, S, et al. Phylogeography of Francisella tularensis subspecies holarctica in Finland, 1993–2011. Infectious Diseases (London) 2015; 47: 705710.
32. Schunder, E, et al. First indication for a functional CRISPR/Cas system in Francisella tularensis . International Journal of Medical Microbiology 2013; 303: 5160.
33. Bell, JF, Stewart, SJ. Chronic shedding tularemia nephritis in rodents: possible relation to occurrence of Francisella tularensis in lotic waters. Journal of Wildlife Diseases 1975; 11: 4214230.
34. Parker, RR, et al. Contamination of natural waters and mud with Pasteurella tularensis and tularemia in beavers and muskrats in the northwestern United States. Bulletin of the National Institute of Health 1951; 193: 1161.
35. Rossow, H, et al. Experimental Infection of voles with Francisella tularensis indicates their amplification role in tularemia outbreaks. PLoS ONE 2014; 9: e108864.
36. Rossow, H, et al. Detection of Francisella tularensis in voles in Finland. Vector-Borne and Zoonotic Diseases 2014; 14: 193198.
37. Backman, S, et al. Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector. Scientific Report 2015; 5: 7793.
38 Boone, I, et al. Tularaemia in southwest Germany: Three cases of tick-borne transmission. Ticks and Tick-borne Diseases 2013, 6: 611614.
39. Gyuranecz, M, et al. Factors influencing emergence of tularemia, Hungary, 1984–2010. Emerging Infectious Diseases 2012; 18: 13791381.
40 Antwerpen, MH, et al. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes (MLST+). PLoS ONE 2015; 10: e0123298.
41. Rydzewski, K, et al. Genome sequence and phenotypic analysis of a first German Francisella sp. isolate (W12-1067) not belonging to the species Francisella tularensis . BMC Microbiology 2014; 14: 169.

Keywords

Type Description Title
WORD
Supplementary materials

Schulze supplementary material
Table S1

 Word (17 KB)
17 KB

High and novel genetic diversity of Francisella tularensis in Germany and indication of environmental persistence

  • C. SCHULZE (a1), K. HEUNER (a2), K. MYRTENNÄS (a3), E. KARLSSON (a3), D. JACOB (a2), P. KUTZER (a1), K. GROßE (a4), M. FORSMAN (a3) and R. GRUNOW (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed