Skip to main content Accessibility help

The global burden of major infectious complications following prostate biopsy

  • H. Y. BENNETT (a1) (a2), M. J. ROBERTS (a1) (a2) (a3), S. A. R. DOI (a4) and R. A. GARDINER (a1) (a3)


We present a systematic review providing estimates of the overall and regional burden of infectious complications following prostate biopsy. A directly standardized prevalence estimate was used because it reflects the burden of disease more explicitly. Complications included sepsis, hospitalization, bacteraemia, bacteriuria, and acute urinary retention after biopsy. There were 165 articles, comprising 162 577 patients, included in the final analysis. Our findings demonstrate that transrectal biopsy was associated with a higher burden of hospitalization (1·1% vs. 0·9%) and sepsis (0·8% vs. 0·1%) compared to transperineal biopsy, while acute urinary retention was more prevalent after transperineal than transrectal biopsy (4·2% vs. 0·9%). The differences were statistically non-significant because of large heterogeneity across countries. We also demonstrate and discuss regional variations in complication rates, with Asian studies reporting higher rates of sepsis and hospitalization.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The global burden of major infectious complications following prostate biopsy
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The global burden of major infectious complications following prostate biopsy
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The global burden of major infectious complications following prostate biopsy
      Available formats


Corresponding author

*Address for correspondence: Associate Professor S. A. R. Doi, Research School of Population Health, Australian National University, Mills Road, Acton, ACT 2601, Australia. (Email:


Hide All
1. GLOBOCAN 2012. Cancer incidence and mortality worldwide: IARC CancerBase No. 11 database ( International Agency for Research on Cancer; 2013. Accessed 14 March 2014.
2. Loeb, S, et al. Systematic review of complications of prostate biopsy. European Urology 2013; 64: 876892.
3. Djavan, B, et al. Safety and morbidity of first and repeat transrectal ultrasound guided prostate needle biopsies: results of a prospective European prostate cancer detection study. Journal of Urology 2001; 166: 856860.
4. Roberts, MJ, et al. Baseline prevalence of antimicrobial resistance and subsequent infection following prostate biopsy using empirical or altered prophylaxis: a bias-adjusted meta-analysis. International Journal of Antimicrobial Agents 2014; 43: 301309.
5. Williamson, DA, et al. Infectious complications following transrectal ultrasound-guided prostate biopsy: new challenges in the era of multidrug-resistant Escherichia coli . Clinical Infectious Diseases 2013; 57: 267274.
6. American Urological Association. Best practice policy statement on urologic surgery antimicrobial prophylaxis ( Published 2012. Accessed 10 May 2013.
7. European Association of Urology. Guidelines on urological infections ( Published 2013. Accessed 10 May 2013.
8. Williamson, DA, et al. Escherichia coli bloodstream infection after transrectal ultrasound-guided prostate biopsy: implications of fluoroquinolone-resistant sequence type 131 as a major causative pathogen. Clinical Infectious Diseases 2012; 54: 14061412.
9. Carignan, A, et al. Increasing risk of infectious complications after transrectal ultrasound-guided prostate biopsies: time to reassess antimicrobial prophylaxis? European Urology 2012; 62: 453459.
10. Nam, RK, et al. Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. Journal of Urology 2013; 189: S12S17.
11. Steensels, D, et al. Fluoroquinolone-resistant E. coli in intestinal flora of patients undergoing transrectal ultrasound-guided prostate biopsy – should we reassess our practices for antibiotic prophylaxis? Clinical Microbiology and Infection 2012; 18: 575581.
12. Simsir, A, et al. Is it possible to predict sepsis, the most serious complication in prostate biopsy? Urologia Internationalis 2010; 84: 395399.
13. Liss, MA, et al. Prevalence and significance of fluoroquinolone resistant Escherichia coli in patients undergoing transrectal ultrasound guided prostate needle biopsy. Journal of Urology 2011; 185: 12831288.
14. Zowawi, HM, et al. The emerging threat of multidrug-resistant Gram-negative bacteria in urology. Nature Reviews Urology 2015; 12: 570584.
15. Takenaka, A, et al. A prospective randomized comparison of diagnostic efficacy between transperineal and transrectal 12-core prostate biopsy. Prostate Cancer and Prostatic Diseases 2008; 11: 134138.
16. Hossack, T, et al. Location and pathological characteristics of cancers in radical prostatectomy specimens identified by transperineal biopsy compared to transrectal biopsy. Journal of Urology 2012; 188: 781785.
17. Shen, PF, et al. The results of transperineal versus transrectal prostate biopsy: a systematic review and meta-analysis. Asian Journal of Andrology 2012; 14: 310315.
18. Hara, R, et al. Optimal approach for prostate cancer detection as initial biopsy: prospective randomized study comparing transperineal versus transrectal systematic 12-core biopsy. Urology 2008; 71: 191195.
19. Miller, J, Perumalla, C, Heap, G. Complications of transrectal versus transperineal prostate biopsy. Australia and New Zealand Journal of Surgery 2005; 75: 4850.
20. Dimmen, M, et al. Transperineal prostate biopsy detects significant cancer in patients with elevated prostate-specific antigen (PSA) levels and previous negative transrectal biopsies. BJU International 2012; 110: E6975.
21. Nesi, MH, et al. A comparison of morbidity following transrectal and transperineal prostatic needle biopsy. Surgery, Gynecology & Obstetrics 1983; 156: 464466.
22. Higgins, JPT, Green, S (eds). Cochrane handbook for systematic reviews of interventions version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011 (
23. Moher, D, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of Clinical Epidemiology 2009; 62: 10061012.
24. Hoy, D, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. Journal of Clinical Epidemiology 2012; 65: 934939.
25. Bennett, H, et al. Major complications following prostate biopsy: a meta-analysis of the international literature. BJU International 2014; 113: 3233.
26. Doi, SA, et al. Simulation comparison of the quality effects and random effects methods of meta-analysis. Epidemiology. 2015; 26: E4244.
27. Doi, SA, et al. Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemporary Clinical Trials 2015; 45: 130138.
28. Hodges, JS, Clayton, MK. Random effects old and new. Technical report, 2011 ( Accessed 1 August 2015.
29. Doi, SAR, Barendregt, JJ, Rao, C. An updated method for risk adjustment in outcomes research. Value in Health 2014; 17: 629633.
30. Barendregt, JJ, et al. Meta-analysis of prevalence. Journal of Epidemiology and Community Health 2013; 67: 974978.
31. Onitilo, AA, Doi, SAR, Barendregt, J.J Meta-analysis II. In: Doi SAR, Williams, GM, eds. Methods of Clinical Epidemiology. Springer Series on Epidemiology and Public Health. Berlin Heidelberg: Springer, 2013, pp. 253266.
32. Hunter, JP, et al. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. Journal of Clinical Epidemiology 2014; 67: 897903.
33. Thompson, PM, et al. The problem of infection after prostatic biopsy: the case for the transperineal approach. BJU. 1982; 6: 736740.
34. Batura, D, Rao, GG. The national burden of infections after prostate biopsy in England and Wales: A wake-up call for better prevention. Journal of Antimicrobial Chemotherapy 2013; 68: 247249.
35. Kapoor, DA, et al. Single-dose oral ciprofloxacin versus placebo for prophylaxis during transrectal prostate biopsy. Urology 1998; 52: 552558.
36. Johnson, L, et al. Emergence of fluoroquinolone resistance in outpatient urinary Escherichia coli isolates. American Journal of Medicine 2008; 121: 876884.
37. Apisarnthanarak, A, et al. Nonjudicious dispensing of antibiotics by drug stores in Pratumthani, Thailand. Infection Control and Hospital Epidemiology 2008; 29: 572575.
38. Williamson, DA, et al. Travel-associated extended-spectrum beta-lactamase-producing Escherichia coli bloodstream infection following transrectal ultrasound-guided prostate biopsy. BJU International 2012; 109: E2122.
39. Feliciano, J, et al. The incidence of fluoroquinolone resistant infections after prostate biopsy – are fluoroquinolones still effective prophylaxis? Journal of Urology 2008; 179: 952955.
40. Taylor, S, et al. Ciprofloxacin resistance in the faecal carriage of patients undergoing transrectal ultrasound guided prostate biopsy. BJU International 2013; 111: 946953.


Type Description Title
Supplementary materials

Bennett supplementary material
Table S1-S5 and Figure S1-S2

 Word (28.0 MB)
28.0 MB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed