Skip to main content Accessibility help
×
Home

Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems

  • C. P. BRUN (a1) (a2), D. MIRON (a3), L. M. R. SILLA (a1) (a4) and A. C. PASQUALOTTO (a1) (a2) (a5)

Summary

Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: A. C. Pasqualotto, M.D., Ph.D., Molecular Biology Laboratory, Santa Casa de Porto Alegre, Av Independência 155, Hospital Dom Vicente Scherer, Heliport, 90035-075, Porto Alegre, Brazil. (Email: pasqualotto@ufcspa.edu.br)

References

Hide All
1.Kriengkauykiat, J, Ito, JI, Dadwal, SS. Epidemiology and treatment approaches in management of invasive fungal infections. Clinical Epidemiology 2011; 3: 175191.
2.Kontoyiannis, DP, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clinical Infectious Diseases 2010; 50: 10911100.
3.Bénet, T, et al. Reduction of invasive aspergillosis incidence among immunocompromised patients after control of environmental exposure. Clinical Infectious Diseases 2007; 45: 682686.
4.Yokoe, D, et al. Infection prevention and control in health-care facilities in which hematopoietic cell transplant recipients are treated. Bone Marrow Transplantation 2009; 44: 495507.
5.Eckmanns, T, Rüden, H, Gastmeier, P. The influence of high-efficiency particulate air filtration on mortality and fungal infection among highly immunosuppressed patients: a systematic review. Journal of Infectious Diseases 2006; 193: 14081418.
6.Humphreys, H. Positive-pressure isolation and the prevention of invasive aspergillosis. What is the evidence? Journal of Hospital Infection 2004; 56: 93100.
7.De Pauw, B, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clinical Infectious Diseases 2008; 46: 18131821.
8.Falvey, DG, Streifel, AJ. Ten-year air sample analysis of Aspergillus prevalence in a university hospital. Journal of Hospital Infection 2007; 67: 3541.
9.Nihtinen, A, et al. Invasive Aspergillus infections in allo-SCT recipients: environmental sampling, nasal and oral colonization and galactomannan testing. Bone Marrow Transplantation 2010; 45: 333338.
10.Hahn, T, et al. Efficacy of high-efficiency particulate air filtration in preventing aspergillosis in immunocompromised patients with hematologic malignancies. Infection Control and Hospital Epidemiology 2002; 23: 525531.
11.Curtis, L, et al. Aspergillus surveillance project at a large tertiary-care hospital. Journal of Hospital Infection 2005; 59: 188196.
12.Alberti, C, et al. Relationship between environmental fungal contamination and the incidence of invasive aspergillosis in haematology patients. Journal of Hospital Infection 2001; 48: 198206.
13.Hospenthal, DR, Know-Chung, KJ, Bennet, JE. Concentration of airborne Aspergillus compared to the incidence of invasive aspergillosis: lack of correlation. Medical Mycology 1998; 36: 165168.
14.Fournel, I, et al. Airborne Aspergillus contamination during hospital construction works: Efficacy of protective measures. American Journal of Infection Control 2010; 38: 189194.
15.Leenders, ACAP, et al. Density and molecular epidemiology of Aspergillus in air and relationship to outbreaks of Aspergillus infection. Journal of Clinical Microbiology 1999; 37: 17521757.
16.Brenier-Pinchart, MP, et al. Influence of internal and outdoor factors on filamentous fungal flora in hematology wards. American Journal of Infection Control 2009; 37: 631637.
17.Panackal, AA, et al. Geoclimatic influences on invasive aspergillosis after hematopoietic stem cell transplantation. Clinical Infection Diseases 2010; 50: 1588– 1597.

Keywords

Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems

  • C. P. BRUN (a1) (a2), D. MIRON (a3), L. M. R. SILLA (a1) (a4) and A. C. PASQUALOTTO (a1) (a2) (a5)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed