Skip to main content Accessibility help
×
Home

Factors associated with persistent colonisation with methicillin-resistant Staphylococcus aureus

  • V. C. CLUZET (a1), J. S. GERBER (a2) (a3) (a4), I. NACHAMKIN (a5), S. E. COFFIN (a2) (a3) (a4), M. F. DAVIS (a6), K. G. JULIAN (a7), T. E. ZAOUTIS (a2) (a3) (a4), J. P. METLAY (a8), D. R. LINKIN (a1) (a2), P. TOLOMEO (a2), J. A. WISE (a2), W. B. BILKER (a2) (a3), B. HU (a5), E. LAUTENBACH (a1) (a2) (a3) and FOR THE CDC PREVENTION EPICENTERS PROGRAM...

Summary

We conducted a prospective cohort study between 1 January 2010 and 31 December 2012 at five adult and paediatric academic medical centres to identify factors associated with persistent methicillin-resistant Staphylococcus aureus (MRSA) colonisation. Adults and children presenting to ambulatory settings with a MRSA skin and soft tissue infection (i.e. index cases), along with household members, performed self-sampling for MRSA colonisation every 2 weeks for 6 months. Clearance of colonisation was defined as two consecutive negative sampling periods. Subjects without clearance by the end of the study were considered persistently colonised and compared with those who cleared colonisation. Of 243 index cases, 48 (19·8%) had persistent colonisation and 110 (45·3%) cleared colonisation without recurrence. Persistent colonisation was associated with white race (odds ratio (OR), 4·90; 95% confidence interval (CI), 1·38–17·40), prior MRSA infection (OR 3·59; 95% CI 1·05–12·35), colonisation of multiple sites (OR 32·7; 95% CI 6·7–159·3). Conversely, subjects with persistent colonisation were less likely to have been treated with clindamycin (OR 0·28; 95% CI 0·08–0·99). Colonisation at multiple sites is a risk factor for persistent colonisation and may require more targeted decolonisation efforts. The specific effect of clindamycin on MRSA colonisation needs to be elucidated.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Factors associated with persistent colonisation with methicillin-resistant Staphylococcus aureus
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Factors associated with persistent colonisation with methicillin-resistant Staphylococcus aureus
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Factors associated with persistent colonisation with methicillin-resistant Staphylococcus aureus
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: V. C. Cluzet, MD, Division of Infectious Diseases, Hospital of the University of Pennsylvania, 3400 Spruce Street, 3rd Floor, Silverstein Building, Ste. E, Philadelphia, PA 19104, USA. (Email: valeriec@mail.med.upenn.edu)

References

Hide All
1. Pallin, DJ, et al. Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community-associated methicillin-resistant Staphylococcus aureus . Annals of Emergency Medicine 2008; 51: 291298.
2. Moran, GJ, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. New England Journal of Medicine 2006; 355: 666674.
3. Kaplan, SL, et al. Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clinical Infectious Diseases 2005; 40: 17851791.
4. Pickett, A, et al. Changing incidence of methicillin-resistant Staphylococcus aureus skin abscesses in a pediatric emergency department. Pediatric Emergency Care 2009; 25: 831834.
5. Maree, CL, et al. Risk factors for infection and colonization with community-associated methicillin-resistant Staphylococcus aureus in the Los Angeles County jail: a case-control study. Clinical Infectious Diseases 2010; 51: 12481257.
6. Ellis, MW, et al. Natural history of community-acquired methicillin-resistant Staphylococcus aureus colonization and infection in soldiers. Clinical Infectious Diseases 2004; 39: 971979.
7. Chen, CJ, et al. Longitudinal analysis of methicillin-resistant and methicillin-susceptible Staphylococcus aureus carriage in healthy adolescents. Journal of Clinical Microbiology 2013; 51: 25082514.
8. Robicsek, A, Beaumont, JL, Peterson, LR. Duration of colonization with methicillin-resistant Staphylococcus aureus . Clinical Infectious Diseases 2009; 48: 910913.
9. Cluzet, VC, et al. Duration of colonization and determinants of earlier clearance of colonization with methicillin-resistant Staphylococcus aureus . Clinical Infectious Diseases 2015; 60: 14891496.
10. Wertheim, HF, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infectious Diseases 2005; 5: 751762.
11. Johansson, PJ, Gustafsson, EB, Ringberg, H. High prevalence of MRSA in household contacts. Scandinavian Journal of Infectious Diseases 2007; 39: 764768.
12. Calfee, DP, et al. Spread of methicillin-resistant Staphylococcus aureus (MRSA) among household contacts of individuals with nosocomially acquired MRSA. Infection Control & Hospital Epidemiology 2003; 24: 422426.
13. Moran, GJ, et al. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerging Infectious Diseases 2005; 11: 928930.
14. Scanvic, A, et al. Duration of colonization by methicillin-resistant Staphylococcus aureus after hospital discharge and risk factors for prolonged carriage. Clinical Infectious Diseases 2001; 32: 13931398.
15. Cluzet, VC, et al. Risk factors for recurrent colonization with methicillin-resistant Staphylococcus aureus in community-dwelling adults and children. Infection Control & Hospital Epidemiology 2015; 36: 786793.
16. Han, Z, et al. Evaluation of Mannitol Salt Agar, CHROMagar™ Staph aureus and CHROMagar™ MRSA for detection of methicillin-resistant Staphylococcus aureus from nasal swab specimens. Journal of Medical Microbiology 2007; 56: 4346.
17. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; eighteenth informational supplement. M100-S18. Wayne, PA: CLSI, 2008.
18. Maldonado, G, Greenland, S. Simulation study of confounder-selection strategies. American Journal of Epidemiology 1993; 138: 923936.
19. Lucet, JC, et al. Carriage of methicillin-resistant Staphylococcus aureus in home care settings: prevalence, duration, and transmission to household members. Archives of Internal Medicine 2009; 169: 13721378.
20. Nouwen, J, et al. Human factor in Staphylococcus aureus nasal carriage. Infection & Immunity 2004; 72: 66856688.
21. Cole, AM, et al. Determinants of Staphylococcus aureus nasal carriage. Clinical Diagnostic Laboratory Immunology 2001; 8: 10641069.
22. Frazee, BW, et al. High prevalence of methicillin-resistant Staphylococcus aureus in emergency department skin and soft tissue infections. Annals of Emergency Medicine 2005; 45: 311320.
23. Harbarth, S, et al. Risk factors for persistent carriage of methicillin-resistant Staphylococcus aureus . Clinical Infectious Diseases 2000; 31: 13801385.
24. Eveillard, M, et al. Evaluation of a strategy of screening multiple anatomical sites for methicillin-resistant Staphylococcus aureus at admission to a teaching hospital. Infection Control & Hospital Epidemiology 2006; 27: 181184.
25. Mollema, FP, et al. Transmission of methicillin-resistant Staphylococcus aureus to household contacts. Journal of Clinical Microbiology 2010; 48: 202207.
26. Fritz, SA, et al. Staphylococcus aureus colonization in children with community-associated Staphylococcus aureus skin infections and their household contacts. Archives of Pediatrics & Adolescent Medicine 2012; 166: 551557.
27. Rodriguez, M, et al. Measurement and impact of colonization pressure in households. Journal of Pediatric Infectious Diseases Society 2013; 2: 147154.
28. Larsson, AK, et al. Duration of methicillin-resistant Staphylococcus aureus colonization after diagnosis: a four-year experience from southern Sweden. Scandinavian Journal of Infectious Diseases 2011; 43: 456462.
29. Klempner, MS, Styrt, B. Prevention of recurrent staphylococcal skin infections with low-dose oral clindamycin therapy. Journal of the American Medical Association 1988; 260: 26822685.
30. Tzermpos, F, et al. An algorithm for the management of Staphylococcus aureus carriage within patients with recurrent staphylococcal skin infections. Journal of Infection & Chemotherapy 2013; 19: 806811.
31. Ammerlaan, HS, et al. Eradication of carriage with methicillin-resistant Staphylococcus aureus: effectiveness of a national guideline. Journal of Antimicrobial Chemotherapy 2011; 66: 24092417.
32. Simor, AE, et al. Randomized controlled trial of chlorhexidine gluconate for washing, intranasal mupirocin, and rifampin and doxycycline versus no treatment for the eradication of methicillin-resistant Staphylococcus aureus colonization. Clinical Infectious Diseases 2007; 44: 178185.
33. Davis, MF, et al. Household transmission of methicillin-resistant Staphylococcus aureus and other staphylococci. Lancet Infectious Diseases 2012; 12: 703716.

Keywords

Factors associated with persistent colonisation with methicillin-resistant Staphylococcus aureus

  • V. C. CLUZET (a1), J. S. GERBER (a2) (a3) (a4), I. NACHAMKIN (a5), S. E. COFFIN (a2) (a3) (a4), M. F. DAVIS (a6), K. G. JULIAN (a7), T. E. ZAOUTIS (a2) (a3) (a4), J. P. METLAY (a8), D. R. LINKIN (a1) (a2), P. TOLOMEO (a2), J. A. WISE (a2), W. B. BILKER (a2) (a3), B. HU (a5), E. LAUTENBACH (a1) (a2) (a3) and FOR THE CDC PREVENTION EPICENTERS PROGRAM...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed