Skip to main content Accessibility help
×
Home

Exposure to cows is not associated with diarrhoea or impaired child growth in rural Odisha, India: a cohort study

  • W.-P. SCHMIDT (a1), S. BOISSON (a1), P. ROUTRAY (a1), M. BELL (a1), M. CAMERON (a1), B. TORONDEL (a1) and T. CLASEN (a1) (a2)...

Summary

Exposure to animal livestock has been linked to zoonotic transmission, especially of gastrointestinal pathogens. Exposure to animals may contribute to chronic asymptomatic intestinal infection, environmental enteropathy and child under-nutrition in low-income settings. We conducted a cohort study to explore the effect of exposure to cows on growth and endemic diarrhoea in children aged <5 years in a rural, low-income setting in the Indian state of Odisha. The study enrolled 1992 households with 2739 children. Height measurements were available for 824 children. Exposure to cows was measured as (1) the presence of a cowshed within or outside the compound, (2) the number of cows owned by a household, and (3) the number of cowsheds located within 50 m of a household. In a sub-study of 518 households, fly traps were used to count the number of synanthropic flies that may act as vectors for gastrointestinal pathogens. We found no evidence that environmental exposure to cows contributes to growth deficiency in children in rural India, neither directly by affecting growth, nor indirectly by increasing the risk of diarrhoea. We found no strong evidence that the presence of a cowshed increased the number synanthropic flies in households.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Exposure to cows is not associated with diarrhoea or impaired child growth in rural Odisha, India: a cohort study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Exposure to cows is not associated with diarrhoea or impaired child growth in rural Odisha, India: a cohort study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Exposure to cows is not associated with diarrhoea or impaired child growth in rural Odisha, India: a cohort study
      Available formats
      ×

Copyright

Corresponding author

* Address for correspondence: W.-P. Schmidt, Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK. (Email: Wolf-Peter.Schmidt@lshtm.ac.uk)

References

Hide All
1. HungaMa. The HUNGaMA Survey Report. HungaMa, 2011.
2. Meade, B, Rosen, S. International Food Security Assessment, 2013–2023. U.S. Department of Agriculture, Economic Research Service, 2013.
3. Panagariya, A. The myth of child malnutrition in India. In: India: Reforms, Economic Transformation and the Socially Disadvantaged. Columbia University, 2012.
4. Humphrey, JH. Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet 2009; 374: 10321035.
5. Dewey, KG, Adu-Afarwuah, S. Systematic review of the efficacy and effectiveness of complementary feeding interventions in developing countries. Maternal and Child Nutrition 2008; 4 (Suppl. 1): 2485.
6. Guerrant, RL, et al. The impoverished gut – a triple burden of diarrhoea, stunting and chronic disease. Nature Reviews Gastroenterology and Hepatology 2013; 10: 220229.
7. Guerrant, RL, et al. Diarrhea as a cause and an effect of malnutrition: diarrhea prevents catch-up growth and malnutrition increases diarrhea frequency and duration. American Journal of Tropical Medicine and Hygiene 1992; 47: 2835.
8. Taniuchi, M, et al. Etiology of diarrhea in Bangladeshi infants in the first year of life analyzed using molecular methods. Journal of Infectious Diseases 2013; 208: 17941802.
9. Keusch, GT, et al. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. Food Nutrition Bulletin 201; 34: 357364.
10. Schmidt, CW. Beyond malnutrition: the role of sanitation in stunted growth. Environmental Health Perspectives 2014; 122: A298303.
11. Kotloff, KL, et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 2013; 382: 209222.
12. Government of India. 19th Livestock census 2012. Department of Animal Husbandry. Delhi: Ministry Of Agriculture, 2012.
13. Clasen, T, et al. The effect of improved rural sanitation on diarrhoea and helminth infection: design of a cluster-randomized trial in Orissa, India. Emerging Themes in Epidemiology 2012; 9: 7.
14. Clasen, T, et al. Effectiveness of a rural sanitation programme on diarrhoea, soil-transmitted helminth infection, and child malnutrition in Odisha, India: a cluster-randomised trial. Lancet Global Health 2014; 2: e645653.
15. Schmidt, WP, et al. Sampling strategies to measure the prevalence of common recurrent infections in longitudinal studies. Emerging Themes in Epidemiology 2010; 7: 5.
16. Schmidt, WP, et al. Epidemiological methods in diarrhoea studies – an update. International Journal of Epidemiology 2011; 40: 16781692.
17. Joint Monitoring Committee - Water and Sanitation. (http://www.who.int/water_sanitation_health/monitoring/jmp2004/en/). 2005.
18. Alexander, N. Review: analysis of parasite and other skewed counts. Tropical Medicine International Health 2012; 17: 684693.
19. Howe, LD, et al. Measuring socio-economic position for epidemiological studies in low- and middle-income countries: a methods of measurement in epidemiology paper. International Journal of Epidemiology 2012; 41: 871886.
20. Martella, V, et al. Zoonotic aspects of rotaviruses. Veterinary Microbiology 2010; 140: 246255.
21. Moller-Stray, J, et al. Two outbreaks of diarrhoea in nurseries in Norway after farm visits, April to May 2009. Eurosurveillance 2012; 17.
22. Majalija, S, et al. Shiga toxin gene-containing Escherichia coli from cattle and diarrheic children in the pastoral systems of southwestern Uganda. Journal of Clinical Microbiology 2008; 46: 352354.
23. Hong, XC, et al. Assessing the effect of an integrated control strategy for schistosomiasis japonica emphasizing bovines in a marshland area of Hubei Province, China: a cluster randomized trial. PLoS Neglected Tropical Diseases 2013; 7: e2122.
24. Gray, DJ, et al. A cluster-randomized bovine intervention trial against Schistosoma japonicum in the People's Republic of China: design and baseline results. American Journal of Tropical Medicine and Hygiene 2007; 77: 866874.
25. Wegayehu, T, Adamu, H, Petros, B. Prevalence of Giardia duodenalis and Cryptosporidium species infections among children and cattle in North Shewa Zone, Ethiopia. BMC Infectious Diseases 2013; 13: 419.
26. Adamu, H, et al. Distribution and clinical manifestations of Cryptosporidium species and subtypes in HIV/AIDS patients in Ethiopia. PLoS Neglected Tropical Diseases 2014; 8: e2831.
27. Helmy, YA, et al. Frequencies and spatial distributions of Cryptosporidium in livestock animals and children in the Ismailia province of Egypt. Epidemiology and Infection 2015; 143: 12081218.
28. Helmy, YA, et al. Epidemiology of Giardia duodenalis infection in ruminant livestock and children in the Ismailia province of Egypt: insights by genetic characterization. Parasit Vectors 2014; 7: 321.
29. Dhama, K, et al. Cowpathy: an overview. The Indian Cow: The Scientific and Economic Journal 2008; 5: 24.
30. Idema, CD, et al. Neonatal tetanus elimination in Mpumalanga Province, South Africa. Tropical Medicine International Health 2002; 7: 622624.
31. Thiem, VD, et al. Animal livestock and the risk of hospitalized diarrhoea in children under 5 years in Vietnam. Tropical Medicine International Health 2012; 17: 613621.
32. Kaufman, JS, Cooper, RS, McGee, DL. Socioeconomic status and health in blacks and whites: the problem of residual confounding and the resiliency of race. Epidemiology 1997; 8: 621628.
33. Pickering, AJ, et al. Hands, water, and health: fecal contamination in Tanzanian communities with improved, non-networked water supplies. Environmental Science and Technology 2010; 44: 32673272.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed