Skip to main content Accessibility help
×
Home

Epidemiological dynamics of nephropathia epidemica in the Republic of Tatarstan, Russia, during the period of 1997–2013

  • N. A. KHISMATULLINA (a1) (a2), M. M. KARIMOV (a3), K. S. KHAERTYNOV (a1) (a4), E. A. SHURALEV (a1) (a2), S. P. MORZUNOV (a5), I. M. KHAERTYNOVA (a4), A. A. IVANOV (a1), I. V. MILOVA (a3), M. B. KHAKIMZYANOVA (a3), G. SH. SAYFULLINA (a3), A. A. GAYNULLIN (a3), A. V. IVANOV (a1), A. A. RIZVANOV (a2) and S. F. KHAIBOULLINA (a2)...

Summary

This report summarizes epidemiological data on nephropathia epidemica (NE) in the Republic of Tatarstan, Russia. NE cases identified in the period 1997–2013 were investigated in parallel with the hantavirus antigen prevalence in small rodents in the study area. A total of 13 930 NE cases were documented in all but one district of Tatarstan, with most cases located in the central and southeastern districts. The NE annual incidence rate exhibited a cyclical pattern, with the highest numbers of cases being registered once in every 3–5 years. The numbers of NE cases rose gradually from July to November, with the highest morbidity in adult males. The highest annual disease incidence rate, 64·4 cases/100 000 population, was observed in 1997, with a total of 2431 NE cases registered. NE cases were mostly associated with visiting forests and agricultural activities. The analysis revealed that the bank vole Myodes glareolus not only comprises the majority of the small rodent communities in the region, but also consistently displays the highest hantavirus prevalence compared to other small rodent species.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Epidemiological dynamics of nephropathia epidemica in the Republic of Tatarstan, Russia, during the period of 1997–2013
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Epidemiological dynamics of nephropathia epidemica in the Republic of Tatarstan, Russia, during the period of 1997–2013
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Epidemiological dynamics of nephropathia epidemica in the Republic of Tatarstan, Russia, during the period of 1997–2013
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr S. F. Khaiboullina, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlevskaya St 18, Kazan, 420008, Tatarstan, Russian Federation. (Email: sv.khaiboullina@gmail.com) [S.F.K.] (Email: rizvanov@gmail.com) [A.A.R.]

References

Hide All
1. Plyusnin, A, Vapalahti, O, Vaheri, A. Hantaviruses: genome structure, expression and evolution. Journal of General Virolology 1996; 77: 26772687.
2. Yanagihara, R, Amyx, HL, Gajdusek, DC. Experimental infection with Puumala virus, the etiologic agent of nephropathia epidemica, in bank voles (Clethrionomys glareolus). Journal of Virology 1985; 55: 3438.
3. Khaiboullina, SF, Morzunov, SP, St Jeor, SC. Hantaviruses: molecular biology, evolution and pathogenesis. Current Moecular Mededicine 2005; 5: 773790.
4. Plyusnin, A, Morzunov, SP. Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Current Topics in Microbiology and Immunology 2001; 256: 4775.
5. Diglisic, G, et al. Seroprevalence study of Hantavirus infection in the community based population. Maryland Medical Journal 1999; 48: 303306.
6. Heyman, P, et al. A five-year perspective on the situation of haemorrhagic fever with renal syndrome and status of the hantavirus reservoirs in Europe, 2005–2010. Eurosurveillance 2011; 16: 18
7. Kariwa, H, et al. Epidemiological study of hantavirus infection in the Samara Region of European Russia. Journal of Veterinary Medical Science 2009; 71: 15691578.
8. Souza, WM, et al. Phylogeography and evolutionary history of rodent-borne hantaviruses. Infection, Genetics and Evolution 2014; 21: 198204.
9. Luong, LT, et al. Dynamics of hantavirus infection in Peromyscus leucopus of central Pennsylvania. Vector Borne Zoonotic Diseases 2011; 11: 14591464.
10. Augot, D, et al. Dynamics of Puumala virus infection in bank voles in Ardennes department (France). Pathologie Biologie (Paris) 2006; 54: 572577.
11. Schlegel, M, et al. Tula virus infections in the Eurasian water vole in Central Europe. Vector Borne Zoonotic Diseases 2012; 12: 503513.
12. Song, JW, et al. Characterization of Tula virus from common voles (microtus arvalis) in Poland: evidence for geographic-specific phylogenetic clustering. Virus Genes 2004; 29: 239247.
13. Milazzo, ML, et al. Geographic distribution of hantaviruses associated with neotomine and sigmodontine rodents, Mexico. Emerging Infectious Diseases 2012; 18: 571576.
14. Tadin, A, et al. High infection rate of bank voles (Myodes glareolus) with Puumala virus is associated with a winter outbreak of haemorrhagic fever with renal syndrome in Croatia. Epidemiology and Infection 2014; 142: 19451951.
15. Klempa, B, Radosa, L, Kruger, DH. The broad spectrum of hantaviruses and their hosts in Central Europe. Acta Virologica 2013; 57: 130137.
16. Korobov, LI, et al. Morbidity and prophylaxis of hemorrhagic fever with renal syndrome in the Republic of Bashkortostan [in Russian]. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii 2001; 4: 5860.
17. Onishchenko, GG, Ezhlova, EB. Epidemiologic surveillance and prophylaxis of hemorrhagic fever with renal syndrome in Russian Federation [in Russian]. Zhurnal Mikrobiologii Epidemiologii i Immunobiologii 2013; 4: 2332.
18. Dzagurova, TK, et al. Molecular diagnostics of hemorrhagic fever with renal syndrome during a Dobrava virus infection outbreak in the European part of Russia. Journal of Clinical Microbiology 2009; 47: 40294036.
19. Bashkirev, TA. HFRS clinical presentation in Middle Volga Region natural foci. Kazan Medical Journal 1958; 6: 1015.
20. Settergren, B, et al. Clinical characteristics of nephropathia epidemica in Sweden: prospective study of 74 cases. Reviews of Infectious Diseases 1989; 11: 921927.
21. Settergren, B, et al. Hemorrhagic fever with renal syndrome: comparison of clinical course in Sweden and in the Western Soviet Union. Scandinavian Journal of Infectious Diseases 1991; 23: 549552.
22. Bren, AF, et al. Acute renal failure due to hemorrhagic fever with renal syndrome. Renal Failure 1996; 18: 635638.
23. Sundberg, E, et al. Evidence of disseminated intravascular coagulation in a hemorrhagic fever with renal syndrome-scoring models and severe illness. PLoS ONE 2011; 6: e21134.
24. Kruger, DH, Schonrich, G, Klempa, B. Human pathogenic hantaviruses and prevention of infection. Human Vaccines 2011; 7: 685693.
25. Olsson, GE, et al. Demographic factors associated with hantavirus infection in bank voles (Clethrionomys glareolus). Emerging Infectious Diseases 2002; 8: 924929.
26. Bernshtein, AD, et al. Dynamics of Puumala hantavirus infection in naturally infected bank voles (Clethrinomys glareolus). Archives of Virology 1999; 144: 24152428.
27. Korpela, H, Lahdevirta, J. The role of small rodents and patterns of living in the epidemiology of nephropathia epidemica. Scandinavian Journal of Infectious Diseases 1978; 10: 303305.
28. Olsson, GE, et al. Human hantavirus infections, Sweden. Emerging Infectious Diseases 2003; 9: 13951401.
29. Jonsson, CB, Figueiredo, LT, Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clinical Microbiology Reviews 2010; 23: 412441.
30. Khismatullina, N, Karimov, M, Savitskaya, TA. Epidemic situation and control measures against epidemic hemorrhagic fever and west nile fever in the republic Tatarstan. Zhurnal Veterinarnoy Mediciny 2012; 96: 6668.
31. Mustonen, J, et al. The pathogenesis of nephropathia epidemica: new knowledge and unanswered questions. Antiviral Research 2013; 100: 589604.
32. Garanina, SB, et al. Genetic diversity and geographic distribution of hantaviruses in Russia. Zoonoses and Public Health 2009; 56: 297309.
33. Vapalahti, O, et al. Isolation and characterization of Tula virus, a distinct serotype in the genus Hantavirus, family Bunyaviridae. Journal of General Virology 1996; 77: 30633067.
34. Olsson, GE, et al. Habitat factors associated with bank voles (Clethrionomys glareolus) and concomitant hantavirus in northern Sweden. Vector Borne Zoonotic Diseases 2005; 5: 315323.
35. Heyman, P, et al. Association between habitat and prevalence of hantavirus infections in bank voles (Myodes glareolus) and wood mice (Apodemus sylvaticus). Vector Borne Zoonotic Diseases 2009; 9: 141146.

Keywords

Epidemiological dynamics of nephropathia epidemica in the Republic of Tatarstan, Russia, during the period of 1997–2013

  • N. A. KHISMATULLINA (a1) (a2), M. M. KARIMOV (a3), K. S. KHAERTYNOV (a1) (a4), E. A. SHURALEV (a1) (a2), S. P. MORZUNOV (a5), I. M. KHAERTYNOVA (a4), A. A. IVANOV (a1), I. V. MILOVA (a3), M. B. KHAKIMZYANOVA (a3), G. SH. SAYFULLINA (a3), A. A. GAYNULLIN (a3), A. V. IVANOV (a1), A. A. RIZVANOV (a2) and S. F. KHAIBOULLINA (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed