Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T22:16:14.704Z Has data issue: false hasContentIssue false

The discovery of pneumococcal type transformation: an appreciation

Published online by Cambridge University Press:  15 May 2009

W. Hayes
Affiliation:
M.R.C. Microbial Genetics Research Unit, Hammersmith Hospital, London, W. 12
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The remarkable paper by Fred. Griffith on the significance of pneumococcal types, reproduced in the preceding pages of this Journal, in which it was first published 38 years ago (Griffith, 1928), describes a series of careful and painstaking experiments which show beyond doubt that the ability to produce a polysaccharide capsule can regularly be restored to ‘rough’ (R) strains of pneumococci which have lost it, by the subcutaneous inoculation of mice with a mixture of a small number of the living R bacteria and an excess of heat-killed, capsulated (S) virulent bacteria. The inoculated mice frequently died from septicaemia and virulent, capsulated S organisms could be isolated from the blood. On the other hand, in control experiments, the injection of suspensions of heat-killed S bacteria alone never yielded living organisms, while recovery of virulent S organisms by (mutational) reversion, following inoculation of living R bacteria alone, was a rare event. Griffith called this phenomenon ‘transformation’ and, at least in the field of bacterial genetics, this name is still specifically used to describe it.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1966

References

REFERENCES

Abel, P. & Trautner, T. A. (1964). Formation of an animal virus within a bacterium. Z. VererbLehre, 95, 66.Google ScholarPubMed
Alloway, J. L. (1933). Further observations on the use of pneumococcus extracts in effecting transformation of type in vitro. J. exp. Med. 57, 265.CrossRefGoogle ScholarPubMed
Ben-Gurion, R. & Ginsburg-Tietz, Y. (1965). Infection of Escherichia coli K-12 with RNA of encephalomyocarditis virus. Biochem. biophys. Res. Commun. 18, 226.CrossRefGoogle ScholarPubMed
Avery, O. T., Macleod, C. M. & McCarty, M. (1944). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. exp. Med. 79, 137.CrossRefGoogle ScholarPubMed
Dawson, M. H. & Sia, R. H. P. (1931). A technique for inducing transformation of pneumococcal types in vitro. J. exp. Med. 54, 681.CrossRefGoogle ScholarPubMed
Demerec, M. (1945). Production of Staphylococcus strains resistant to various concentrations of penicillin. Proc. natn. Acad. Sci., U.S.A. 31, 16.CrossRefGoogle ScholarPubMed
Ephrussi-Taylor, H. (1951). Genetic aspects of transformations of pneumococci. Cold Spring Harb. Symp. quant. Biol. 16, 445.CrossRefGoogle ScholarPubMed
Fraenkel-Conrat, H., Singer, B. & Williams, R. C. (1957). Infectivity of viral nucleic acid. Biochim. biophys. Acta, 25, 87.CrossRefGoogle ScholarPubMed
Franklin, R. E. & Gosling, R. G. (1953). Molecular configuration in sodium thymonucleate. Nature, Lond., 171, 740.CrossRefGoogle ScholarPubMed
Gierer, A. & Schramm, G. (1956). Infectivity of ribonucleic acid from tobacco mosaic virus. Nature, Lond., 177, 702.CrossRefGoogle ScholarPubMed
Goodgal, S. H. & Herriot, R. M. (1957). Studies on transformation of Haemophilus influenzae. In The Chemical Basis of Heredity (eds. McElroy, W. D. and Glass, B.), p. 336. Baltimore: Johns Hopkins Press.Google Scholar
Griffith, F. (1928). The significance of pneumococcal types. J. Hyg., Camb., 27, 113.CrossRefGoogle ScholarPubMed
Hotchkiss, R. D. (1951). Transfer of penicillin resistance in pneumococci by the desoxyri-bonucleate derived from resistant cultures. Cold Spring Harb. Symp. quant. Biol. 16, 457.CrossRefGoogle ScholarPubMed
Hotchkiss, R. D. (1952). The role of desoxyribonucleates in bacterial transformation. In Phosphorus Metabolism (eds. McElroy, W. D. and Glass, B.), vol. ii. 426. Baltimore: Johns Hopkins Press.Google Scholar
Hotchkiss, R. D. & Marmur, J. (1954). Double marker transformations as evidence of linked factors in desoxyribonculeate transforming agents. Proc. natn. Acad. Sci., U.S.A., 40, 55.CrossRefGoogle ScholarPubMed
Jackson, S. (1962). Genetic aspects of capsule formation in the pneumococcus. Br. med. Bull. 18, 24.CrossRefGoogle ScholarPubMed
Lerman, L. S. & Tolmach, L. J. (1957). Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in Pneumococcus. Biochim. biophys. Acta, 26, 68.CrossRefGoogle ScholarPubMed
McCarty, M. & Avery, O. T. (1946). Studies on the chemical nature of the substance inducing transformation of pneumococcal types. II. Effect of desoxyribonuclease on the biological activity of the transforming substance. J. exp. Med. 83, 89.CrossRefGoogle ScholarPubMed
Mills, G. T. & Smith, E. E. B. (1962). Biosynthetic aspects of capsule formation in the pneumococcus. Br. med. Bull. 18, 27.CrossRefGoogle ScholarPubMed
Obittjary: Griffith, Fred. (1941). Lancet, i, 588Google Scholar
Oishi, M., Yoshikawa, H. & Sueoka, N. (1964). Synchronous and dichotomous replications of the Bacillus subtilis chromosome during spore germination. Nature, Lond., 204, 1069.CrossRefGoogle ScholarPubMed
Ravin, A. W. (1961). The genetics of transformation. Adv. Genet. 10, 62.Google ScholarPubMed
Rupert, C. S. (1961). Repair of ultraviolet damage in cellular DNA. J. cell. comp. Physiol. 57 (Suppl. 1), 57.CrossRefGoogle Scholar
Sueoka, M. & Yoshikawa, H. (1963). Regulation of chromosome replication in Bacillus subtilis. Cold Spring Harb. Symp. quant. Biol. 28, 47.CrossRefGoogle Scholar
Watson, J. D. & Crick, F. H. C. (1953 a). The structure of DNA. Cold Spring Harb. Symp. quant. Biol. 18, 123.CrossRefGoogle ScholarPubMed
Watson, J. D. & Crick, F. H. C. (1953 b). Genetic implications of the structure of deoxyribonucleic acid. Nature, Lond., 171, 964.CrossRefGoogle ScholarPubMed
Wilkins, M. F. H., Stokes, A. R. & Wilson, H. R. (1953). Molecular structure of deoxypentose nucleic acids. Nature, Lond., 171, 738.CrossRefGoogle ScholarPubMed