Skip to main content Accessibility help
×
Home

Derivation and validation of clinical prediction rules for reduced vancomycin susceptibility in Staphylococcus aureus bacteraemia

  • J. H. HAN (a1), W. B. BILKER (a2) (a3), P. H. EDELSTEIN (a4), K. B. MASCITTI (a5) and E. LAUTENBACH (a1) (a2) (a3)...

Summary

Reduced vancomycin susceptibility (RVS) may lead to poor clinical outcomes in Staphylococcus aureus bacteraemia. We conducted a cohort study of 392 patients with S. aureus bacteraemia within a university health system. The association between RVS, as defined by both Etest [vancomycin minimum inhibitory concentration (MIC) >1·0 μg/ml] and broth microdilution (vancomycin MIC ⩾1·0 μg/ml), and patient and clinical variables were evaluated to create separate predictive models for RVS. In total, 134 (34·2%) and 73 (18·6%) patients had S. aureus isolates with RVS by Etest and broth microdilution, respectively. The final model for RVS by Etest included methicillin resistance [odds ratio (OR) 1·51, 95% confidence interval (CI) 0·97–2·34], non-white race (OR 0·67, 95% CI 0·42–1·07), healthcare-associated infection (OR 0·56, 95% CI 0·32–0·96), and receipt of any antimicrobial therapy ⩽30 days prior to the culture date (OR 3·06, 95% CI 1·72–5·44). The final model for RVS by broth microdilution included methicillin resistance (OR 2·45, 95% CI 1·42–4·24), admission through the emergency department (OR 0·54, 95% CI 0·32–0·92), presence of an intravascular device (OR 2·24, 95% CI 1·30–3·86), and malignancy (OR 0·51, 95% CI 0·26–1·00). The availability of an easy and rapid clinical prediction rule for early identification of RVS can be used to help guide the timely and individualized management of these serious infections.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Derivation and validation of clinical prediction rules for reduced vancomycin susceptibility in Staphylococcus aureus bacteraemia
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Derivation and validation of clinical prediction rules for reduced vancomycin susceptibility in Staphylococcus aureus bacteraemia
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Derivation and validation of clinical prediction rules for reduced vancomycin susceptibility in Staphylococcus aureus bacteraemia
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: J. H. Han, M.D., Division of Infectious Diseases, Department of Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, 3rd Floor, Silverstein Building, Ste E, Philadelphia, PA 19104, USA. (Email: jennifer.han@uphs.upenn.edu)

References

Hide All
1.Hidron, AI, et al. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infection Control and Hospital Epidemiology 2008; 29: 9961011.
2.Klevens, RM, et al. Invasive methicillin-resistant Staphylococcus aureus infections in the United States. Journal of the American Medical Association 2007; 298: 17631771.
3.Cosgrove, SE, et al. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infection Control and Hospital Epidemiology 2005; 26: 166174.
4.Centers for Diseases Control and Prevention. Staphylococcus aureus with reduced susceptibility to vancomycin – United States, 1997. Morbidity and Mortality Weekly Report 1997; 46: 765766.
5.Steinkraus, G, White, R, Friedrich, L. Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05. Journal of Antimicrobial Chemotherapy 2007; 60: 788794.
6.Wang, G, et al. Increased vancomycin MICs for Staphylococcus aureus clinical isolates from a university hospital during a 5-year period. Journal of Clinical Microbiology 2006; 44: 38833886.
7.Hawser, SP, et al. Rising incidence of Staphylococcus aureus with reduced susceptibility to vancomycin and susceptibility to antibiotics: a global analysis 2004–2009. International Journal of Antimicrobial Agents 2011; 37: 219224.
8.Etest technical manual. AB Biodisk (http://www.abbiodisk.com/bd_litt_etm.html). Accessed 5 November 2011.
9.Clinical and Laboratory Standards Institute. Methods for dilutional antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7-A7. Wayne, PA: CLSI, 2007.
10.Hidayat, LK, et al. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Archives of Internal Medicine 2006; 166: 21382144.
11.Sakoulas, G, et al. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Journal of Clinical Microbiology 2004; 42: 23982402.
12.Moise, PA, et al. Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrobial Agents and Chemotherapy 2007; 51: 25822586.
13.Moise-Broder, PA, et al. Accessory gene regulator group II polymorphism in methicillin-resistant Staphylococcus aureus is predictive of failure of vancomycin therapy. Clinical Infectious Diseases 2004; 38: 17001705.
14.Soriano, A, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clinical Infectious Diseases 2008; 46: 193200.
15.Lodise, TP, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrobial Agents and Chemotherapy 2008; 52: 33153320.
16.Wang, JL, et al. Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: Mortality analyses and the impact of vancomycin, MIC = 2 mg/l, by the broth microdilution method. BMC Infectious Diseases 2010; 10: 159.
17.Aguado, JM, et al. High vancomycin MIC and complicated methicillin-susceptible Staphylococcus aureus bacteremia. Emerging Infectious Diseases 2011. (http://www.cdc.gov/EID/content/17/6/1099.htm). Accessed 9 May 2011.
18.Yoon, YK, et al. Predictors of persistent methicillin-resistant Staphylococcus aureus bacteraemia in patients treated with vancomycin. Journal of Antimicrobial Chemotherapy 2010; 65: 10151018.
19.Kullar, R, et al. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clinical Infectious Diseases 2011; 52: 975981.
20.Holmes, NE, et al. Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. Journal of Infectious Diseases 2011; 204: 340347.
21.Price, J, et al. Paradoxical relationship between the clinical outcome of Staphylococcus aureus bacteremia and the minimum inhibitory concentration of vancomycin. Clinical Infectious Diseases 2009; 48: 997998.
22.Lubin, AS, et al. Predicting high vancomycin minimum inhibitory concentration in methicillin-resistant Staphylococcus aureus bloodstream infections. Clinical Infectious Diseases 2011; 52: 9971002.
23.Hsu, DI, et al. Comparison of method-specific vancomycin minimum inhibitory concentration values and their predictability for treatment outcome of meticillin-resistant Staphylococcus aureus (MRSA) infections. International Journal of Antimicrobial Agents 2008; 32: 7885.
24.Sader, HS, Rhomberg, PR, Jones, RN. Nine-hospital study comparing broth microdilution and Etest method results for vancomycin and daptomycin against methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 2009; 53: 31623165.
25.Vaudaux, P, et al. Underestimation of vancomycin and teicoplanin MICs by broth microdilution leads to underdetection of glycopeptide-intermediate isolates of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 2010; 54: 38613870.
26.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. Informational supplement M100-S18. Wayne, PA, CLSI, 2008.
27.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility tests. Approved standard M2-A9. Wayne, PA, CLSI, 2006.
28.Barton, TD, et al. High rate of coadministration of di- or tri-valent cation-containing compounds with oral fluoroquinolones: risk factors and potential implications. Infection Control and Hospital Epidemiology 2005; 26: 9399.
29.Gasink, LB, et al. Fluoroquinolone-resistant Pseudomonas aeruginosa: assessment of risk factors and clinical impact. American Journal of Medicine 2006; 119: e19e25.
30.Lee, I, et al. Risk factors for fluconazole-resistant Candida glabrata bloodstream infections. Archives of Internal Medicine 2009; 169: 379383.
31.Quan, H, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Medical Care 2005; 43: 11301139.
32.Mickey, RM, Greenland, S. The impact of confounder selection criteria on effect estimation. American Journal of Epidemiology 1989; 129: 125137.
33.Hosmer, DW, Lemeshow, S. Applied Logistic Regression. New York, NY: John Wiley & Sons, 1989.
34.Harrell, FE Jr., Lee, KL, Mark, DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistical Medicine 1996; 15: 361387.
35.Efron, B, Tibshirani, RJ. An Introduction to the Bootstrap. New York, NY: Chapman & Hall, 1998.
36.Steyerberg, EW, et al. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. Journal of Clinical Epidemiology 2001; 54: 774781.
37.Anthony, K, et al. Prior vancomycin use is a risk factor for reduced vancomycin susceptibility in methicillin-susceptible but not methicillin-resistant Staphylococcus aureus bacteremia. Infection Control and Hospital Epidemiology 2012; 33: 160166.
38.Moore, CL, et al. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study. Clinical Infectious Diseases 2012; 54: 5158.
39.Lodise, TP, et al. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clinical Infectious Diseases 2003; 36: 14181423.
40.Paul, M, et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. Journal of Antimicrobial Chemotherapy 2010; 65: 26582665.
41.Ender, M, et al. Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 2004; 48: 22952297.
42.Harrell, FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. New York: Springer, 2001.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed