Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T14:46:50.688Z Has data issue: false hasContentIssue false

A cephalosporin active in vivo against Nocardia: efficacy of cefotaxime in murine model of acute pulmonary nocardiosis

Published online by Cambridge University Press:  19 October 2009

Alan M. Sugar
Affiliation:
Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA 95128, Stanford University, Stanford, CA 94305, Institute for Medical Research, San Jose, CA 95128
Resham S. Chahal
Affiliation:
Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA 95128, Stanford University, Stanford, CA 94305, Institute for Medical Research, San Jose, CA 95128
David A. Stevens
Affiliation:
Division of Infectious Diseases, Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA 95128, Stanford University, Stanford, CA 94305, Institute for Medical Research, San Jose, CA 95128
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cefotaxime, a cephalosporin drug, has been shown to be active in vitro against nocardiae, a finding confirmed in this study. Pharmacokinetic studies were performed in mice to define regimens which provided peak serum levels comparable to that achieved in man with currently used doses. These regimens were shown to be effective with only short courses of therapy of rapidly progressive and highly lethal N. asteroides infection, produced by pulmonary challenge of mice. This suggests the possible utility of this drug in human nocardiosis.

Type
Special Feature: Edmond-Isadore-Etienne Nocard
Copyright
Copyright © Cambridge University Press 1983

References

REFERENCES

Bach, M. C., Gold, O. & Finland, M. (1973). Activity on minocycline against Nocardia asteroides: comparison with tetracycline in agar-dilution and standard disc-diffusion tests and with sulfadiazine in an experimental infection of mice. Journal of Laboratory and Clinical Medicine 81, 787793.Google Scholar
Bach, M. C., Sabath, L. D. & Finland, M. (1973). Susceptibility of Nocardia asteroides to 45 antimicrobial agents in vitro. Antimicrobial Agents and Chemotherapy 3, 18.CrossRefGoogle ScholarPubMed
Beaman, B. L. (1975). The structural and biochemical alterations of Nocardia asteroides cell walls during its growth cycle. Journal of Bacteriology 123, 12351253.CrossRefGoogle ScholarPubMed
Beaman, B. L., Goldstein, E., Gershwin, M. E., Maslan, S. & Lippert, W. (1978). Lung response of congenitally athymic (nude), heterozygous, and Swiss Webster mice to aerogenic and intranasal infection by Nocardia asteroides. Infection and Immunity 22, 867877.CrossRefGoogle ScholarPubMed
Beaman, B. L., Maslan, S., Scates, S. & Rosen, J. (1980). Effect of route of inoculation on host resistance to Nocardia. Infection and Immunity 28, 185189.CrossRefGoogle ScholarPubMed
Carroll, G. F., Brown, J. N. & Haley, L. D. (1977). A method for determining in vitro drug susceptibilities of some nocardiae and actinomadurae: results with 17 antimicrobial agents. American Journal of Clinical Pathology 68, 279283.CrossRefGoogle ScholarPubMed
Cook, F. V. & Farrar, W. E. Jr (1978). Treatment of Nocardia asteroides infection with trimethoprim-sulfamethoxazole. Southern Medical Journal 71, 512515.CrossRefGoogle ScholarPubMed
Cynamon, M. H. & Palmer, G. S. (1981). In vitro susceptibility of Nocardia asteroides to N-formimidoyl thienamyein and several cephalosporins. Antimicrobial Agents and Chemotherapy 20, 841842.CrossRefGoogle ScholarPubMed
Dalovisio, J. R. & Pankey, G. A. (1982). Clinical pharmocokinetics of cefotaxime in patients with normal and reduced renal function. Review of Infections Diseases 4 (supplement), S333S345.Google Scholar
Epstein, E. (1974). Treatment of a cutaneous Nocardia asteroides infection with minocycline hydrochloride. Western Journal of Medicine 120, 497499.Google ScholarPubMed
Finland, M., Bach, M. C., Garner, C. & Gold, O. (1974). Synergistic action of ampicillin and erythromycin against Nocardia asteroides: effect of time of incubation. Antimicrobial Agents and Chemotherapy 5, 344353.CrossRefGoogle ScholarPubMed
Galoiani, J. N. & Stevens, D. A. (1976). Antimicrobial susceptibility testing of yeasts: a turbidometric technique independent of inoculum size. Antimicrobial Agents and Chemotherapy 10, 721726.CrossRefGoogle Scholar
Garcia-Rodriguez, J. A., Gomez-Garcia, A. C., Aguero, J. & Garcia-Sanchez, J. E. (1982). In vitro susceptibility of Nocardia and Rhodococcus to 14 beta-lactam antibiotics. Journal of Antimicrobial Chemotherapy 10, 564565.CrossRefGoogle Scholar
Gombert, M. E. (1982). Susceptibility of Nocardia asteroides to various antibiotics, including newer beta-lactams, trimethoprim-sulfamethoxazole, amikacin and N-formimidoyl thienamycin. Antimicrobial Agents and Chemotherapy 21, 10111012.CrossRefGoogle ScholarPubMed
Jones, R. N. & Thornsberry, C. (1982). Cefotaxime: a review of in vitro antimicrobial properties and spectrum of activity. Reviews of Infectious Diseases 4 (supplement), S300S315.CrossRefGoogle ScholarPubMed
Karakusis, P. H., Feczko, J. M., Goodman, L. J., Hanlon, D. M., Harris, A. A., Levin, S. & Trenholme, G. M. (1982). Clinical efficacy of cefotaxime in serious infections. Antimicrobial Agents and Chemotherapy 21, 119124.CrossRefGoogle ScholarPubMed
Maderazo, E. G. & Quintiliani, R. (1974). Treatment of nocardial infection with trimethoprim and sulfamethoxazole. American Journal of Medicine 57, 671675.CrossRefGoogle ScholarPubMed
Martin-Luengo, F., Lopez-Azorin, F. & Bernal, M. (1981). Activity of nine cephalosporins against Nocardia asteroides. Proceedings of the 12th Interscience Congress of Chemotherapy (ed. Periti, P. and Grassi, G. G.), pp. 367368. Washington, D.C.: American Society for Microbiology.Google Scholar
Smith, P. W., Steinkraus, G. E., Hendricks, B. W. & Madson, E. C. (1980). CNS nocardiosis. Response to sulfamethoxazole-trimethoprim. Archives of Neurology 37, 729730.CrossRefGoogle ScholarPubMed
Wallace, R. J. Jr, Septimus, E. J., Musher, D. M., Berger, M. B. & Martin, R. R. (1979). Treatment of experimental nocardiosis in mice: comparison of amikacin and sulfonamide. Journal of Infectious Diseases 140, 244248.CrossRefGoogle ScholarPubMed
Wallace, R. J. Jr, Septimus, E. J., Musher, D. M. & Martin, R. R. (1977). Disk diffusion susceptibility testing of Nocardia species. Journal of Infectious Diseases 135, 568576.CrossRefGoogle ScholarPubMed
Wallace, R. J., Septimus, E. J., Williams, T. W. Jr, Conklin, R. H., Satterwhite, T. K., Busbhy, M. B. & Hollowell, D.C. (1982). Use of trimethoprim-sulfamethoxazole for treatment of infections due to Nocardia. Reviews of Infectious Diseases 4, 315325.CrossRefGoogle ScholarPubMed
Wren, M. V., Savage, A. M. & Alford, R. H. (1979). Apparent cure of intracranial Nocardia asteroides infection by minocycline. Archives of Internal Medicine 139, 249250.CrossRefGoogle ScholarPubMed
Yoqev, R., Greenslade, T., Firlit, C. F. & Lewy, P. (1980). Successful treatment of Nocardia asteroides infection with amikacin. Journal of Pediatrics 96, 771773.CrossRefGoogle Scholar
Young, L. S., Armstrong, D., Blevins, A. & Lieberman, P. (1971). Nocardia asteroides infection complicating neoplastic disease. American Journal of Medicine 50, 356367.CrossRefGoogle ScholarPubMed