Skip to main content Accessibility help
×
Home

Bovine leukaemia virus DNA in fresh milk and raw beef for human consumption

  • N. N. OLAYA-GALÁN (a1) (a2), A. P. CORREDOR-FIGUEROA (a2), T. C. GUZMÁN-GARZÓN (a2), K. S. RÍOS-HERNANDEZ (a2), S. P. SALAS-CÁRDENAS (a2), M. A. PATARROYO (a3) (a4) and M. F. GUTIERREZ (a2)...

Summary

Bovine leukaemia virus (BLV) is the causative agent of enzootic bovine leucosis, which has been reported worldwide. BLV has been found recently in human tissue and it could have a significant impact on human health. A possible hypothesis regarding viral entry to humans is through the consumption of infected foodstuffs. This study was aimed at detecting the presence of BLV DNA in raw beef and fresh milk for human consumption. Nested PCR directed at the BLV gag gene (272 bp) was used as a diagnostic test. PCR products were confirmed by Sanger sequencing. Forty-nine per cent of the samples proved positive for the presence of proviral DNA. This is the first study highlighting the presence of the BLV gag gene in meat products for human consumption and confirms the presence of the viral DNA in raw milk, as in previous reports. The presence of viral DNA in food products could suggest that viral particles may also be found. Further studies are needed to confirm the presence of infected viral particles, even though the present findings could represent a first approach to BLV transmission to humans through foodstuff consumption.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bovine leukaemia virus DNA in fresh milk and raw beef for human consumption
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bovine leukaemia virus DNA in fresh milk and raw beef for human consumption
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bovine leukaemia virus DNA in fresh milk and raw beef for human consumption
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Author for correspondence: N. N. Olaya-Galán, Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 No. 40 – 62, Building 50 Lab. 123, Bogotá, Colombia. (E-mail: nuryolaya@gmail.com)

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1. Barez, P-Y, et al. Recent advances in BLV research. Viruses 2015; 7: 60806088. doi:10.3390/v7112929.
2. Hemmatzadeh, F, et al. Interaction between bovine leukemia virus (BLV) infection and age on telomerase misregulation. Veterinary Research Communications 2015; 39: 97103.
3. Yuan, Y, et al. Detection of the BLV provirus from nasal secretion and saliva samples using BLV-CoCoMo-qPCR-2: comparison with blood samples from the same cattle. Virus Research 2015; 210: 248254.
4. Úsuga-Monroy, C, Echeverri, J, López-Herrera, H. Diagnóstico molecular del virus de leucosis bovina en una población de vacas Holstein, Colombia. Archivos de Zootecnia 2015; 64: 383388.
5. Acaite, J, et al. The eradication experience of enzootic bovine leukosis from Lithuania. Preventive Veterinary Medicine 2007; 82: 8389.
6. Buehring, GC, et al. Bovine leukemia virus DNA in human breast tissue. Emerging Infectious Diseases 2014; 20: 772782.
7. Buehring, GC, et al. Exposure to bovine leukemia virus is associated with breast cancer: a case-control study. PLoS ONE 2015; 10: e0134304.
8. Ochoa Cruz, A, Uribe, A, Gutiérrez, M. Estudio del potencial zoonótico del Virus de la Leucosis Bovina y su presencia en casos de cáncer de seno. Universitas Scientiarum. Bogota, Colombia: Pontificia Universidad Javeriana, 2006, pp. 3140.
9. Mesa, G, et al. Bovine leukemia virus gene segment detected in human breast tissue. Open Journal of Medical Microbiology 2013; 3: 8490.
10. Zhang, R, et al. Lack of association between bovine leukemia virus and breast cancer in Chinese patients. Breast Cancer Research 2016; 18: 101.
11. Gillet, NA, Willems, L. Whole genome sequencing of 51 breast cancers reveals that tumors are devoid of bovine leukemia virus DNA. Retrovirology 2016; 13: 75.
12. Lassauzet, ML, et al. Factors associated with in utero or periparturient transmission of bovine leukemia virus in calves on a California dairy. Canadian Journal of Veterinary Research 1991; 55: 264268.
13. Mekata, H, et al. Horizontal transmission and phylogenetic analysis of bovine leukemia virus in two districts of Miyazaki, Japan. The Journal of Veterinary Medical Science 2015; 77: 11151120.
14. Kobayashi, S, et al. Analysis of risk factors associated with bovine leukemia virus seropositivity within dairy and beef breeding farms in Japan: a nationwide survey. Research in Veterinary Science 2014; 96: 4753.
15. Buehring, GC, Philpott, SM, Choi, KY. Humans have antibodies reactive with bovine leukemia virus. AIDS Research and Human Retroviruses 2003; 19: 11051113.
16. Aw, TG, Wengert, S, Rose, JB. Metagenomic analysis of viruses associated with field-grown and retail lettuce identifies human and animal viruses. International Journal of Food Microbiology 2016; 223: 5056.
17. Rodríguez-Lázaro, D, et al. Presence of pathogenic enteric viruses in illegally imported meat and meat products to EU by international air travelers. International Journal of Food Microbiology 2015; 209: 3943.
18. Rivero-Juarez, A, et al. Familial hepatitis E outbreak linked to wild boar meat consumption. Zoonoses and Public Health 2017; 64: 15.
19. Di Bartolo, I, et al. Detection of hepatitis E virus in pork liver sausages. International Journal of Food Microbiology 2015; 193: 2933.
20. Fusco, G, et al. Prevalence of foodborne viruses in mussels in Southern Italy. Food and Environmental Virology 2017; 9: 187194.
21. Szabo, K, et al. Detection of hepatitis E virus RNA in raw sausages and liver sausages from retail in Germany using an optimized method. International Journal of Food Microbiology 2015; 215: 149156.
22. Scallan, E, et al. Foodborne illness acquired in the United States – unspecified agents. Emerging Infectious Diseases 2011; 17: 1622.
23. Buehring, GC. Response to ‘Lack of association between bovine leukemia virus and breast cancer in Chinese patients’. Breast Cancer Research 2017; 19. doi:10.1186/s13058-017-0808-7.
24. Ortega, DO, et al. Seroprevalence and risk factors associated with bovine leukemia virus in Colombia. Journal of Veterinary Medicine and Animal Health 2016; 8: 3543.
25. Aida, Y, et al. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Frontiers in Microbiology 2013; 4: 111.
26. Instituto Colombiano Agropecuario. Resolucion 3714- ‘Por la cual se establecen las enfermedades de declaración obligatoria en Colombia’. Bogotá, Colombia: Ministerio de Agricultura, 2015.
27. Hugh-Jones, ME, Hubbert, WT, Hacstad, HV. Section I: Introduction to the zoonoses. ZOONOSES: Recognition, Control, and Prevention. Iowa: Iowa State Press, 1995, pp. 737.
28. World Health organization – WHO. Zoonoses and the Human-Animal-Ecosystems Interface. WHO, 2013 (http://www.who.int/zoonoses/en/). Accessed 12 January 2017.
29. Sinha, G. Bovine leukemia virus possibly linked to breast cancer. Journal of the National Cancer Institute 2016; 108: djw020.
30. Greig, JD, Ravel, A. Analysis of foodborne outbreak data reported internationally for source attribution. International Journal of Food Microbiology 2009; 130: 7787.
31. Hugh-Jones, ME, Hubbert, WT, Hagstad, HV. Principles of Zoonoses Control and Prevention. Zoonoses. Iowa, USA: Iowa State Press, 2000, pp. 79120.
32. Hartl, J, Wehmeyer, MH, Pischke, S. Acute hepatitis E: two sides of the same coin. Viruses 2016; 8: 299. doi:10.3390/v8110299.
33. Yamada, T, et al. Cell infectivity in relation to bovine leukemia virus gp51 and p24 in bovine milk exosomes. PLoS ONE 2013; 8: e77359.
34. Meas, S, et al. Vertical transmission of bovine leukemia virus and bovine immunodeficiency virus in dairy cattle herds. Veterinary Microbiology 2002; 84: 275282.
35. Kobayashi, S, et al. Risk factors associated with within-herd transmission of bovine leukemia virus on dairy farms in Japan. BMC Veterinary Research 2010; 6: 1.
36. Gutiérrez, G, et al. Characterization of colostrum from dams of BLV endemic dairy herds. Veterinary Microbiology 2015; 177: 366369.
37. Southern, SO, et al. Persistent HTLV-I infection of breast luminal epithelial cells: a role in HTLV transmission? Virology 1998; 241: 200214.
38. Prameela, KK. HIV transmission through breastmilk: the science behind the understanding of current trends and future research. The Medical Journal of Malaysia 2012; 67: 644651.
39. Lawson, JS, et al. Breastfeeding, breast milk and viruses. BMC Women's Health 2007; 7: 17.
40. Baumgartener, L, Olson, C, Onuma, M. Effect of pasteurization and heat treatment on bovine leukemia virus. Journal of the American Veterinary Medical Association 1976; 169: 11891191.
41. Chung, YS, et al. The effect of pasteurisation on bovine leucosis virus-infected milk bovine leucosis virus. Australian Veterinary Journal 1986; 63: 379380.
42. Rubino, MJ, Donham, KJ. Inactivation of bovine leukemia virus-infected lymphocytes in milk. American Journal of Veterinary Research 1984; 45: 15531556.
43. emilyproject.org. Emily Project. Emily Project – Objective. 2014 (http://www.theemilyproject.org/objective.htm). Accessed 26 January 2017.
44. Kelly, TR, et al. One health proof of concept: bringing a transdisciplinary approach to surveillance for zoonotic viruses at the human-wild animal interface. Preventive Veterinary Medicine 2017; 137: 112118. doi:10.1016/j.prevetmed.2016.11.023.
45. Nuotio, L, et al. Eradication of enzootic bovine leukosis from Finland. Preventive Veterinary Medicine 2003; 59: 4349.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed