Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T23:36:35.592Z Has data issue: false hasContentIssue false

Binding to and antibacterial effect of ampicillin, neomycin and polymyxin B on human faeces

Published online by Cambridge University Press:  19 October 2009

M. P. Hazenberg
Affiliation:
Department of Medical Microbiology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
A. M. Pennock-Schröder
Affiliation:
Department of Medical Microbiology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
M. Van Den Boom
Affiliation:
Department of Medical Microbiology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
J. P. Van De Merwe
Affiliation:
Department of Medical Microbiology, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neomycin and polymyxin B, used during selective decontamination of the gastrointestinal tract, were studied for their effect on the human faecal flora in vitro. The selective effect was found to be associated with a relative insusceptibility of the obligate anaerobic flora as compared with the facultatively anaerobic Gram-negative rods (Escherichia coli). Both neomycin and polymyxin B were bound by human faeces, in contrast to ampicillin. The results may explain the selective effect of neomycin and polymyxin B on the human flora in vivo.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

References

REFERENCES

Appelbaum, P. C. & Chatterton, S. A. (1978). Susceptibility of anaerobic bacteria to ten antimicrobial agents. Antimicrobial Agents and Chemotherapy 14, 374376.CrossRefGoogle ScholarPubMed
Bennet, J. V., Brodie, J. L., Benner, E. J. & Kirby, W. M. M. (1966). Simplified accurate method for antibiotic assay of clinical specimens. Applied Microbiology 14, 170177.CrossRefGoogle Scholar
E.O.R.T.C. Gnotobiotic Project Group (1982). A prospective cooperative study of antimicrobial decontamination in granulocytopenic patients. Comparison of two different methods. Infection 10, 131138.CrossRefGoogle Scholar
Gotoff, S. P. & Lepper, M. H. (1965). Treatment of Salmonella carriers with colistin sulfate. American Journal of Medical Science 249, 399403.CrossRefGoogle ScholarPubMed
Guiot, H. F. L., van der Meer, J. W. M. & Van Furth, R. (1981). Selective antimicrobial Modulation of human microflora: infection prevention in patients with decreased host defence mechanisms by selective elimination of potentially pathogenic bacteria. The Journal of Infectious Diseases 143, 644653.CrossRefGoogle Scholar
Guiot, H. F. L., van den Broek, P. J., van der Meer, J. W. M. & van Furth, R. (1983). Selective antimicrobial modulation of the intestinal flora of patients with acute nonlymphocy tic leukemia: a double blind, placebo-controlled study. The Journal of Infectious Diseases 147, 615623.CrossRefGoogle Scholar
Hazenberg, M. P., Bakker, M. & Verschoor-Burggraaf, A. (1981). Effects of the human intestinal flora on germ-free mice. Journal of Applied Bacteriology 50, 95106.CrossRefGoogle ScholarPubMed
Hazenherg, M. P., van de Boom, M., Bakker, M. & van de Merwe, J. P. (1983 a). Binding to faeces and influence on human anaerobes of antimicrobial agents used for selective decontamination. Antonie van Leeuwenhoek 49, 111117.CrossRefGoogle Scholar
Hazenberg, M. P., van de Boom, M., Bakker, M. & van de Merwe, J. P. (1983 b). Effects of antibiotics on the human intestinal flora in mice. Antonie van Leeuwenhoek 49, 97109.CrossRefGoogle ScholarPubMed
Hendriks, W. D. H. (1980). Gastrointestinal decontamination in healthy and lethally irradiated monkeys. M.D. Thesis, Groningen.Google Scholar
Ruseler-Van Embden, J. G. H. & Both-Patoir, H. C. (1983). Anaerobic gram-negative faecal flora in patients with Crohn's disease and healthy subjects. Antonie van Leeuwenhoek 49, 125132.CrossRefGoogle ScholarPubMed
Stephen, A. M. & Cummings, J. H. (1980). The microbial contribution to human faecal mass. Journal of Medical Microbiology 13, 4556.CrossRefGoogle ScholarPubMed
de Vries-Hospers, H. G., Sleijfer, D. T., Mulder, N. H., van der Waaij, D., Nieweg, H. O. & van Saene, H. K. F. (1981). Bacteriological aspects of selective decontamination of the digestive tract as a method of infection prevention in granulocytopenic patients. Antimicrobial Agents and Chemotherapy 19, 813820.CrossRefGoogle ScholarPubMed
van der Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-van der Wees, J. E. C. (1971). Colonization resistance of the digestive tract in conventional and antibiotic treated mice. Journal of Hygiene 69, 405411.CrossRefGoogle ScholarPubMed
van der Waaij, D., Berghuis-de Vries, J. M. & Korthals, Altes C. (1974). Oral dose and faecal concentration of antibiotics during antibiotic decontamination in mice and in a patient. Journal of Hygiene 73, 197203.CrossRefGoogle ScholarPubMed
Young, L. S. (1983). Antimicrobial prophylaxis against infection in neutropenic patients. Journal of Infectious Diseases 147, 611614.Google ScholarPubMed
Wagman, G. H., Bailey, J. V. & Weinstein, M. J. (1974). Binding of aminoglycosides to feces. Antimicrobial agents and Chemotherapy 6, 415417.CrossRefGoogle ScholarPubMed
Wensinck, F., Custers-van Lieshout, L. M. C., Poppelaars-Kustermans, P. A. J. & Schröder, A. M. (1981). The faecal flora of patients with Crohn's disease. Journal of Hygiene 87, 112.CrossRefGoogle ScholarPubMed