Skip to main content Accessibility help
×
Home

Bayesian analysis of culture and PCR methods for detection of Campylobacter spp. in broiler caecal samples

  • M. E. ARNOLD (a1), E. M. JONES (a2), J. R. LAWES (a3), A. B. VIDAL (a4), F. A. CLIFTON-HADLEY (a4), J. D. RODGERS (a4) and L. F. POWELL (a3)...

Summary

The objective of this study was to estimate the sensitivity and specificity of a culture method and a polymerase chain reaction (PCR) method for detection of two Campylobacter species: C. jejuni and C. coli. Data were collected during a 3-year survey of UK broiler flocks, and consisted of parallel sampling of caeca from 436 batches of birds by both PCR and culture. Batches were stratified by season (summer/non-summer) and whether they were the first depopulation of the flock, resulting in four sub-populations. A Bayesian approach in the absence of a gold standard was adopted, and the sensitivity and specificity of the PCR and culture for each Campylobacter subtype was estimated, along with the true C. jejuni and C. coli prevalence in each sub-population. Results indicated that the sensitivity of the culture method was higher than that of PCR in detecting both species when the samples were derived from populations infected with at most one species of Campylobacter. However, from a mixed population, the sensitivity of culture for detecting both C. jejuni or C. coli is reduced while PCR is potentially able to detect both species, although the total probability of correctly identifying at least one species by PCR is similar to that of the culture method.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bayesian analysis of culture and PCR methods for detection of Campylobacter spp. in broiler caecal samples
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bayesian analysis of culture and PCR methods for detection of Campylobacter spp. in broiler caecal samples
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bayesian analysis of culture and PCR methods for detection of Campylobacter spp. in broiler caecal samples
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: M. E. Arnold, Animal Health and Veterinary Laboratories Agency, The Elms, College Road, Sutton Bonington, Loughborough LE12 5RB, UK. (Email: mark.arnold@ahvla.gsi.gov.uk)

References

Hide All
1. Olson, CK, et al. Epidemiology of Campylobacter jejuni infections in industrialized nations. In: Nachamkin, I, Szymanski, CM, Blaser, MJ, eds. Campylobacter. Washington: AMS Press, 2008, pp. 163189.
2. Gillespie, IA, et al. A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerging Infectious Diseases 2002; 8: 937942.
3. Tam, CC, et al. Campylobacter coli – an important foodborne pathogen. Journal of Infection 2003; 47: 2832.
4. Newell, DG, Fearnley, C. Sources of Campylobacter colonization in broiler chickens. Applied and Environmental Microbiology 2003; 69: 43434351.
5. Miller, WG, et al. Identification of host-associated alleles by multilocus sequence typing of Campylobacter coli strains from food animals. Microbiology 2006; 152: 245255.
6. Thakur, S, et al. Molecular epidemiologic investigation of Campylobacter coli in swine production systems, using multilocus sequence typing. Applied and Environmental Microbiology 2006; 72: 56665669.
7. Anon. Commission Decision of 19 July 2007 concerning a financial contribution from the Community towards a survey on the prevalence and antimicrobial resistance of Campylobacter spp. in broiler flocks and on the prevalence of Campylobacter spp. and Salmonella spp. in broiler carcasses to be carried out in the Member States (2007/516/EC). (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:190:0025:0037:EN:PDF). Accessed 5 February 2014.
8. Moran, L, Kelly, C, Madden, RH. Factors affecting the recovery of Campylobacter spp. from retail packs of raw, fresh chicken using ISO 10 272-1:2006. Letters in Applied Microbiology 2009; 48: 628–32.
9. Vidal, AB, et al. Comparison of different sampling strategies and laboratory methods for the detection of C. jejuni and C. coli from broiler flocks at primary production. Zoonoses and Public Health 2013; 60: 412425.
10. Rosenquist, H, Bengtsson, A, Hansen, TB. A collaborative study on a Nordic standard protocol for detection and enumeration of thermotolerant Campylobacter in food (NMKL 119, 3. ed., 2007). International Journal of Food Microbiology 2007; 118: 201213.
11. Williams, LK, et al. Enrichment culture can bias the isolation of Campylobacter subtypes. Epidemiology and Infection 2012; 140: 12271235.
12. Randall, L, et al. Development and evaluation of internal amplification controls for use in a real-time duplex PCR assay for detection of Campylobacter coli and Campylobacter jejuni . Journal of Medical Microbiology 2010; 59: 172178.
13. Lawes, JR, et al. Investigation of prevalence and risk factors for Campylobacter in broiler flocks at slaughter: results from a UK survey. Epidemiology and Infection 2012; 140: 17231737.
14. Gardner, IA. The utility of Bayes’ theorem and Bayesian inference in veterinary clinical practise and research. Australian Veterinary Journal 2002; 80: 758761.
15. Arnold, ME, Cook, AJC, Davies, RH. A modelling approach to estimate the sensitivity of pooled faecal samples for isolation of salmonella in pigs. Journal of the Royal Society Interface 2005; 2: 365372.
16. Arnold, ME, et al. Estimation of the sensitivity of environmental sampling for detection of Salmonella Enteriditis in commercial egg-laying flocks relative to the within-flock prevalence. Epidemiology and Infection 2010; 138: 330339.
17. Fitzgerald, C, Whichard, J, Nachamkin, I. Diagnosis and antimicrobial susceptibility of Campylobacter species. In: Nachamkin, I, Szymanski, CM, Blaser, MJ, eds. Campylobacter. Washington: AMS Press, 2008, pp. 227243.
18. Anon. Microbiology of food and animal feeding stuffs – horizontal method of detection and enumeration of Campylobacter spp. Part 1 – detection method. ISO 10272-1, 2006(E).
19. Rodgers, JD, et al. An evaluation of the survival and detection of Campylobacter jejuni and C. coli in broiler caecal contents using culture based methods. Journal of Applied Microbiology 2010; 109: 12441252.
20. Woldemarium, E, et al. The sensitivity and specificity of fecal and cecal culture for detection of Campylobacter in Dutch broiler flocks quantified by Bayesian analysis. International Journal of Food Microbiology 2008; 121: 308312.
21. Anon. Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008. Part A, Campylobacter and Salmonella prevalence estimates. EFSA Journal 2010; 8: 1503.
22. El-Shibiny, A, Connerton, PL, Connerton, IF. Campylobacter succession in broiler chickens. Veterinary Microbiology 2007; 125: 323332.
23. Best, EL, et al. Applicability of a rapid duplex real-time PCR assay for speciation of Campylobacter jejuni and Campylobacter coli directly from culture plates. FEMS Microbiology Letters 2003; 229: 237241.
24. Leblanc-Maridor, M, et al. Rapid identification and quantification of Campylobacter coli and Campylobacter jejuni by real time PCR in pure cultures and in complex samples. BMC Microbiology 2011; 11: 113.
25. Choi, YK, Johnson, WO, Thurmond, MC. Diagnosis using predictive probabilities without cut-offs. Statistics in Medicine 2006; 25: 699717.

Keywords

Type Description Title
WORD
Supplementary materials

Arnold Supplementary Material
Supplementary Material

 Word (201 KB)
201 KB

Bayesian analysis of culture and PCR methods for detection of Campylobacter spp. in broiler caecal samples

  • M. E. ARNOLD (a1), E. M. JONES (a2), J. R. LAWES (a3), A. B. VIDAL (a4), F. A. CLIFTON-HADLEY (a4), J. D. RODGERS (a4) and L. F. POWELL (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed