Skip to main content Accessibility help
×
Home

Association between meteorological factors and reported cases of hand, foot, and mouth disease from 2000 to 2015 in Japan

  • A. SUMI (a1), S. TOYODA (a2), K. KANOU (a3), T. FUJIMOTO (a3), K. MISE (a4), Y. KOHEI (a1) (a5), A. KOYAMA (a6) and N. KOBAYASHI (a1)...

Summary

The purpose of this study was to clarify the association between hand, foot, and mouth disease (HFMD) epidemics and meteorological conditions. We used HFMD surveillance data of all 47 prefectures in Japan from January 2000 to December 2015. Spectral analysis was performed using the maximum entropy method (MEM) for temperature-, relative humidity-, and total rainfall-dependent incidence data. Using MEM-estimated periods, long-term oscillatory trends were calculated using the least squares fitting (LSF) method. The temperature and relative humidity thresholds of HFMD data were estimated from the LSF curves. The average temperature data indicated a lower threshold at 12 °C and a higher threshold at 30 °C for risk of HFMD infection. Maximum and minimum temperature data indicated a lower threshold at 6 °C and a higher threshold at 35 °C, suggesting a need for HFMD control measures at temperatures between 6 and 35 °C. Based on our findings, we recommend the use of maximum and minimum temperatures rather than the average temperature, to estimate the temperature threshold of HFMD infections. The results obtained might aid in the prediction of epidemics and preparation for the effect of climatic changes on HFMD epidemiology.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Association between meteorological factors and reported cases of hand, foot, and mouth disease from 2000 to 2015 in Japan
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Association between meteorological factors and reported cases of hand, foot, and mouth disease from 2000 to 2015 in Japan
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Association between meteorological factors and reported cases of hand, foot, and mouth disease from 2000 to 2015 in Japan
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: A. Sumi, Department of Hygiene, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan. (Email: sumi@sapmed.ac.jp)

References

Hide All
1. Song, Y, et al. Time series analyses of hand, foot and mouth disease integrating weather variables. PLoS ONE 2015; 10: e0117296.
2. Ma, E, et al. Is hand, foot and mouth disease associated with meteorological parameters? Epidemiology and Infection 2010; 138: 17791788.
3. Hii, YL, Rocklöv, J, Ng, N. Short term effects of weather on hand, hoot and mouth disease . PLoS ONE 2011; 6: e16796. doi: 10.1371/journal.pone.0016796.
4. Chen, B, et al. Time series analysis of reported cases of hand, foot, and mouth disease from 2010 to 2013 in Wuhan, China. BMC Infectious Diseases 2015; 15: 495509.
5. Chang, HL, et al. The association between enterovirus 71 infections and meteorological parameters in Taiwan. PLoS ONE 2012; 7: e46845. doi: 10.1371/journal.pone.0046845.
6. Liao, J, et al. Short-term effect of climatic variables on hand, foot, and mouth disease in mainland China, 2008–2013: a multilevel spatial Poisson regression model accounting for overdispersion. PLoS ONE 2016; 25: e0147054. doi: 10.1371/journal.pone.0147054.
7. Dowell, SF. Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerging Infectious Diseases 2001; 7: 369374.
8. Chang, LY, et al. Risk factors of enterovirus 71 infection and associated hand, foot, and mouth disease/herpangina in children during an epidemic in Taiwan. Pediatrics 2002; 109: e88.
9. Chang, LY, et al. Transmission and clinical features of enterovirus 71 infections in household contacts in Taiwan. JAMA 2004; 291: 222227.
10. Meeburg, BG, Kijllstra, A. Changing climate-changing pathogens: Toxoplasma gondii in North-Western Europe. Parasitology Research 2009; 105: 1724.
11. Patz, JA, et al. Impact of regional climate change on human health. Nature 2005; 438: 310317.
12. Harigane, K, et al. The role of temperature in reported chickenpox cases from 2000 to 2011 in Japan. Epidemiology and Infection 2015; 143: 26662678.
13. Onozuka, D, Hashizume, M. The influence of temperature and humidity on the incidence of hand, foot, and mouth disease in Japan. Science of the Total Environment 2011; 410: 119125.
14. Ohtomo, N, et al. New method of time series analysis and its application to Wolf's sunspot number data. Japanese Journal of Applied Physics 1994; 33: 28212831.
15. Sumi, A, et al. Effect of temperature, relative humidity and rainfall on dengue fever and leptospirosis infections in Manila, the Philippines. Epidemiology and Infection 2017; 145: 7886.
16. Infectious Diseases Surveillance Center. Infectious Diseases Weekly Report (http://www.nih.go.jp/niid/ja/idwr.html). Accessed 7 March 2017.
17. Nagai, M. Surveillance of infectious diseases. Journal of Public Health Practice 2005; 69: 864869 (in Japanese).
18. Japan Meteorological Agency. Weather, Climate & earthquake information (http://www.jma.go.jp/jma/kishou/know/amedas/kaisetsu.html). Accessed 11 May 2017 (in Japanese).
19. Japan Meteorological Agency. Weather, Climate & earthquake information (http://www.jma.go.jp/jma/indexe.html). Accessed 7 March 2017.
20. Donald Ahrens, C. Meteorology Today: An Introduction to Weather and Climate, 10th edn. Boston: Cengage Learning, 2012.
21. Chan, PKS, et al. Seasonal influenza activity in Hong Kong and its association with meteorological variations. Journal of Medical Virology 2009; 81: 17971806.
22. Armitage, P, Berry, G, Matthews, JNS. Statistical Methods in Medical Research. 4th edn. Oxford: Blackwell Science, 2012.
23. Mattfeldt, T. Nonlinear deterministic analysis of tissue texture: a serological study on mastopathic and mammary cancer tissue using chaos theory. Journal of Microscopy 1997; 185: 4766.
24. Mise, K, et al. Spectral study of spatial series data of pathologic tissue: a study on small intestine in ICR mouse. Japanese Journal of Applied Physics 2009; 48: 017001-1017001-8.
25. Sumi, A, et al. Time-series analysis of hepatitis A, B, C and E infections in a large Chinese city: application to prediction analysis. Epidemiology and Infection 2013; 141: 905915.
26. Sumi, A, et al. Effect of temperature, relative humidity and rainfall on rotavirus infections in Kolkata, India. Epidemiology and Infection 2013; 141: 16521661.
27. Salo, R, Cliver, D. Effect of acid PH, salts, and temperature on the infectivity and physical integrity of enteroviruses. Archives of Virology 1976; 52: 269282.
28. Zhang, Z, et al. Short-term effects of meteorological factors on hand, foot and mouth disease among children in Shenzen, China: non-linearity, threshold and interaction. Science of the Total Environment 2016; 539: 576582.
29. Wong, S, et al. Human enterovirus 71 and hand, foot and mouth disease. Epidemiology and Infection 2010; 138: 10711089.
30. Abad, FX, Pinto, RM, Bosch, A. Survival of enteric viruses on environmental fomites. Applied and Environmental Microbiology 1994; 60: 37043710.
31. Harada, K, et al. Virological and epidemiological analysis of coxsackievirus A24 variant epidemic of acute hemorrhagic conjunctivitis in Okinawa, Japan, in 2011. Journal of Clinical Ophthalmology 2015; 15: 10851092.
32. Liao, J, et al. Short-term effects of climatic variables on hand foot, and mouth disease in mainland China, 2008–2013: a multilevel spatial Poisson regression model accounting for overdispersion. PLoS ONE 2016; 11: e0147054.
33. Liu, Y, et al. Spatio-temporal analysis of the relationship between climate and hand, foot, and mouth disease in Shandong province, China, 2008–2012. BMC Infectious Diseases 2015; 15: 146153.
34. Lum, LC, et al. Fatal enterovirus 71 encephalomyelitis. Journal of Pediatrcs 1998; 133: 795798.
35. Tnag, JH, et al. Latitude-based approach for detecting aberrations of hand, foot, and mouth disease epidemics. BMC Medical Informatics and Decision Making 2015; 15: 113126.
36. Huang, Y, et al. Effect of meteorological variables on the incidence of hand, foot, and mouth disease in children: a time-series analysis in Guangzhou, China. BMC Infectious Diseases 2013; 13: 134.
37. Takahashi, S, et al. Hand, foot and mouth disease in China: modeling epidemic dynamics in enterovirus serotypes and implications for vaccination. PLoS Medicine 2016; 13: e1001958.

Keywords

Type Description Title
WORD
Supplementary materials

Sumi supplementary material 1
Sumi supplementary material

 Word (283 KB)
283 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed