Skip to main content Accessibility help
×
Home

Application of multiblock modelling to identify key drivers for antimicrobial use in pig production in four European countries

  • L. Collineau (a1) (a2), S. Bougeard (a3), A. Backhans (a4), J. Dewulf (a5), U. Emanuelson (a4), E. Grosse Beilage (a6), A. Lehébel (a2), S. Lösken (a6), M. Postma (a5), M. Sjölund (a4) (a7), K. D. C. Stärk (a1), V. H. M. Visschers (a8) and C. Belloc (a2)...

Abstract

Antimicrobial use in pig farming is influenced by a range of risk factors, including herd characteristics, biosecurity level, farm performance, occurrence of clinical signs and vaccination scheme, as well as farmers’ attitudes and habits towards antimicrobial use. So far, the effect of these risk factors has been explored separately. Using an innovative method called multiblock partial least-squares regression, this study aimed to investigate, in a sample of 207 farrow-to-finish farms from Belgium, France, Germany and Sweden, the relative importance of the six above mentioned categories or ‘blocks’ of risk factors for antimicrobial use in pig production. Four country separate models were developed; they showed that all six blocks provided useful contribution to explaining antimicrobial use in at least one country. The occurrence of clinical signs, especially of respiratory and nervous diseases in fatteners, was one of the largest contributing blocks in all four countries, whereas the effect of the other blocks differed between countries. In terms of risk management, it suggests that a holistic and country-specific mitigation strategy is likely to be more effective. However, further research is needed to validate our findings in larger and more representative samples, as well as in other countries.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Application of multiblock modelling to identify key drivers for antimicrobial use in pig production in four European countries
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Application of multiblock modelling to identify key drivers for antimicrobial use in pig production in four European countries
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Application of multiblock modelling to identify key drivers for antimicrobial use in pig production in four European countries
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: L. Collineau, E-mail: lucie.collineau@canada.ca

Footnotes

Hide All
*

Present address: Public Health Risk Sciences Division, Public Health Agency of Canada, Government of Canada

Footnotes

References

Hide All
1.Anon (2015) Global action plan on antimicrobial resistance. World Health Organization Library Cataloguing-in-Publication Data, 28 pp.
2.Anon. Action plan against the rising threats from antimicrobial resistance. Communication COM (2011) 748 from the Commission to the European Parliament and the Council. Available at http://ec.europa.eu/dgs/health_food-safety/docs/communication_amr_2011_748_en.pdf (Accessed 16 January 2017).
3.Van Boeckel, TP, et al. (2015) Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences 112, 56495654.
4.Friedman, DB, et al. (2007) Importance of prudent antibiotic use on dairy farms in South Carolina: a pilot project on farmers’ knowledge, attitudes and practices. Zoonoses and Public Health 54, 366375.
5.Jensen, VF, Emborg, H-D and Aarestrup, FM (2012) Indications and patterns of therapeutic use of antimicrobial agents in the Danish pig production from 2002 to 2008. Journal of Veterinary Pharmacology and Therapeutics 35, 3346.
6.van Rennings, L, et al. (2015) Cross-sectional study on antibiotic usage in pigs in Germany. PLoS ONE 10, e0119114.
7.Raith, J, et al. (2016) Influence of porcine circovirus type 2 vaccination on the level of antimicrobial consumption on 65 Austrian pig farms. Veterinary Record 178(20), 504504.
8.Postma, M, et al. (2016) Evaluation of the relationship between the biosecurity status, production parameters, herd characteristics and antimicrobial usage in farrow-to-finish pig production in four EU countries. Porcine Health Management 2, 9.
9.Van der Fels-Klerx, HJ, et al. (2011) Farm factors associated with the use of antibiotics in pig production. Journal of Animal Science 89, 19221929.
10.Chauvin, C, et al. (2005) A pharmaco-epidemiological analysis of factors associated with antimicrobial consumption level in Turkey broiler flocks. Veterinary Research 36, 199211.
11.Moreno, MA (2014) Opinions of Spanish pig producers on the role, the level and the risk to public health of antimicrobial use in pigs. Research in Veterinary Science 97, 2631.
12.Coyne, LA, et al. (2014) Understanding antimicrobial use and prescribing behaviours by pig veterinary surgeons and farmers: a qualitative study. Veterinary Record 175, 593.
13.Visschers, VHM, et al. (2016) A comparison of pig farmers’ and veterinarians’ perceptions and intentions to reduce antimicrobial usage in six European countries. Zoonoses and Public Health 63, 534544.
14.Visschers, VHM, et al. (2016) Higher perceived risk of antimicrobials is related to lower antimicrobial usage among pig farmers in four European countries. Veterinary Record 179, 490.
15.Fortané, N, et al. (2015) Learning processes and trajectories for the reduction of antibiotic use in pig farming: a qualitative approach. Antibiotics 4, 435454.
16.Sjölund, M, et al. (2016) Quantitative and qualitative antimicrobial usage patterns in farrow-to-finish pig herds in Belgium, France, Germany and Sweden. Preventive Veterinary Medicine 130, 4150.
17.Timmerman, T, et al. (2006) Quantification and evaluation of antimicrobial drug use in group treatments for fattening pigs in Belgium. Preventive Veterinary Medicine 74, 251263.
18.Postma, M, et al. (2015) Assigning defined daily doses animal: a European multi-country experience for antimicrobial products authorized for usage in pigs. Journal of Antimicrobial Chemotherapy 70, 294302.
19.World Health Organization (2016) Critically important antimicrobials for human medicine. 4th revision. Available at http://www.who.int/foodsafety/publications/antimicrobials-fourth/en/ (Accessed 16 January 2017).
20.Anon. Biocheck.ugent®. Available at http://www.biocheck.ugent.be/ (Accessed 16 January 2017).
21.Laanen, M, et al. (2013) Relationship between biosecurity and production/antimicrobial treatment characteristics in pig herds. The Veterinary Journal 198, 508512.
22.Visschers, VHM, et al. (2015) Perceptions of antimicrobial usage, antimicrobial resistance and policy measures to reduce antimicrobial usage in convenient samples of Belgian, French, German, Swedish and Swiss pig farmers. Preventive Veterinary Medicine 119, 1020.
23Wold, S (1984) Three PLS algorithms according to SW. In Wold, S (ed.). Symposium MULDAST (Multivariate Analysis in Science and Technology). Sweden: Umea University, pp. 2630.
24.Bougeard, S, et al. (2011) From multiblock partial least squares to multiblock redundancy analysis. A continuum approach. Informatica 22, 1126.
25.Bougeard, S, Qannari, EM and Rose, N (2011) Multiblock redundancy analysis: interpretation tools and application in epidemiology. Journal of Chemometrics 25, 467475.
26.Lupo, C, et al. (2010) Risk factors for sanitary condemnation in broiler chickens and their relative impact: application of an original multiblock approach. Epidemiology and Infection 138, 364375.
27.Bougeard, S, et al. (2012) Multiblock modelling to assess the overall risk factors for a composite outcome. Epidemiology and Infection 140, 337347.
28.Westerhuis, JA, Kourti, T and MacGregor, JF (1998) Analysis of multiblock and hierarchical PCA and PLS models. Journal of Chemometrics 12, 301321.
29.Bougeard, S and Cardinal, M (2014) Multiblock modeling for complex preference study. Application to European preferences for smoked salmon. Food Quality and Preference 32, 5664.
30.Josse, J and Husson, F (2012) Handling missing values in exploratory multivariate data analysis methods. Journal de la Société Française de Statistique 153, 7999.
31.Josse, J, et al. (2012) Handling missing values with regularized iterative multiple correspondence analysis. Journal of Classification 29, 91116.
32.Abdi, H and Williams, LJ (2010) Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2, 433459.
33.R Development Core Team (2013) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. Available at http://www.R-project.org (Accessed 16 January 2017).
34.French Agency for Food, Environmental and Occupational Health and Safety (2014). Assessment of the Risks of Emergence of Antimicrobial Resistance Associated with Modes of Antibiotic Use in the Field of Animal Health. Maisons-Alfort, France: ANSES Éditions (ANSES Opinion Request No 2011-SA-0071), 94 pp.
35.Anon (2014) Proposal for a Regulation of the European Parliament and of the Council on the manufacture, placing on the market and use of medicated feed and repealing Council Directive 90/167/EEC, 17 pp.
36.Rhouma, M, et al. (2017) Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica 59, 31.
37.Kruse, AB, et al. (2017) No clear effect of initiating vaccination against common endemic infections on the amounts of prescribed antimicrobials for Danish weaner and finishing pigs during 2007–2013. Frontiers in Veterinary Science 3, 120.
38.Thanawongnuwech, R, et al. (2000) Pathogenesis of porcine reproductive and respiratory syndrome virus-induced increase in susceptibility to Streptococcus suis infection. Veterinary Pathology 37, 143152.
39.Anon (2009) Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs. Official Journal of the European Union L47, 513.
40.Hémonic, A, et al. 2016 Evolution of antimicrobial use between 2010 and 2013 in farms of the INAPORC panel and analysis of treatment patterns by animal category. In IFIP, INRA (eds). Proceedings of the 48th Journées de la Recherche Porcine. Paris, France: Institut du Porc, pp. 307312.
41.Holmgren, N, et al. (1999) Infections with Mycoplasma hyopneumoniae and Actinobacillus pleuropneumoniae in fattening pigs. Influence of piglet production systems and influence on production parameters. Zoonosis and Public Health 46, 535544.
42.Nathues, H, et al. (2013) Herd specific risk factors for Mycoplasma hyopneumoniae infections in suckling pigs at the age of weaning. Acta Veterinaria Scandinavica 55, 30.
43.European Medicines Agency (2015) Sales of veterinary antimicrobial agents in 26 EU/EEA countries in 2013 (EMA/387934/2015). European Surveillance of Veterinary Antimicrobial Consumption report.
44.Eslami, A, et al. (2016) Multiblock and multigroup PLS. Application to study cannabis consumption in thirteen European countries. In Abdi, H (ed.). The Multiple Facets of Partial Least Squares Methods. Switzerland: Springer Verlag, pp. 213226.

Keywords

Type Description Title
WORD
Supplementary materials

Collineau et al. supplementary material 1
Collineau et al. supplementary material

 Word (461 KB)
461 KB

Application of multiblock modelling to identify key drivers for antimicrobial use in pig production in four European countries

  • L. Collineau (a1) (a2), S. Bougeard (a3), A. Backhans (a4), J. Dewulf (a5), U. Emanuelson (a4), E. Grosse Beilage (a6), A. Lehébel (a2), S. Lösken (a6), M. Postma (a5), M. Sjölund (a4) (a7), K. D. C. Stärk (a1), V. H. M. Visschers (a8) and C. Belloc (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed