Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T14:18:38.470Z Has data issue: false hasContentIssue false

Antigenic and genetic homogeneity of Streptococcus uberis strains from the bovine udder

Published online by Cambridge University Press:  15 May 2009

M. H. Groschup
Affiliation:
Department of Microbiology, Immunology and Parasitology, NYSCVM, Cornell University, Ithaca, NY 14850, USA
G. Hahn
Affiliation:
Bundesanstalt für Milchforschung, Institut fuer Hygiene, Hermann Weigmann- Str. 1, 2300 Kiel 1, Federal Republic of Germany
J. F. Timoney
Affiliation:
Department of Microbiology, Immunology and Parasitology, NYSCVM, Cornell University, Ithaca, NY 14850, USA
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

DNA- fingerprints (Hind III) of Streptococcus uberis field isolates from New York State and Europe showed substantial homogeneity, but were different to those of the type strain of the newly proposed psychrophilic species S. parauberis. S. uberis strains had major SDS-heat extracted antigens of molecular masses (Mr) < 14, 40–41, 42–43, 59–61, 80–86 and 118–122 kDa following immunoblotting with rabbit hyperimmune sera. Bovine sera and milk reacted with the 40–41 and 118–122 kDa antigens. Variations in the Mr of particular bands were too unevenly distributed to permit formation of subgroups. Although cross reactive, the sizes of the antigens of S. parauberis strain NCDO 2020 were substantially different to those of S. uberis, the most prominent antigen having a Mr of 50 kDa. The antigenic and genetic data therefore strongly support the introduction of S. parauberis as a distinct species. S. uberis strains reacted with antiserum to Lancefield groups B, E, G and P, their grouping reactions showing no correlation with DNA and immunoblot fingerprints. Lancefield grouping of S. uberis therefore appears to have little value in identification.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

References

REFERENCES

1.Bramley, AJ. Streptococcus uberis udder infection – a major barrier to reducing mastitis incidence. Br Vet J 1984; 140: 328–35.CrossRefGoogle Scholar
2.Francis, PG, Wilesmith, JW, Wilson, CD. Observations on the incidence of clinical bovine mastitis in non-lactating cows in England and Wales. Vet Rec 1986; 118: 549–52.CrossRefGoogle ScholarPubMed
3.Wilesmith, JW, Francis, PG, Wilson, CD. Incidence of clinical mastitis in a cohort of British dairy herds. Vet Rec 1986; 118: 199204.CrossRefGoogle Scholar
4.Bramley, AJ. Streptococcus uberis mastitis. Epidemiology and pathogenesis. Animal Health Nutrition 1987; 42: 12–6.Google Scholar
5.Watts, JL. Characterization and identification of streptococci isolated from the bovine mammary gland. J Dairy Sci 1988; 71: 1616–24.CrossRefGoogle Scholar
6.McDonald, TJ, McDonald, JS. Streptococci isolated from bovine mammary infections. Am J Vet Res 1975; 37: 377–81.Google Scholar
7.Bramley, AJ, Dodd, FH. Reviews of the progress of dairy science: mastitis control-progress and prospects. J. Dairy Res 1984; 51: 481512.CrossRefGoogle ScholarPubMed
8.King, JS. Streptococcus uberis: a review of its role as a causative organism of bovine mastitis. I. Characteristics of the organism. Br Vet J 1981; 137: 3652.CrossRefGoogle ScholarPubMed
9.King, JS. Streptococcus uberis: a review of its role as a causative organism of bovine mastitis. II. Control of infection. Br Vet J 1981; 137: 160–5.CrossRefGoogle ScholarPubMed
10.Sneath, PHA, Mair, NS, Sharpe, ME, Holt, JG, eds. Bergey's manual of determinative bacteriology, vol. 2. Williams & Wilkins, Baltimore MD, 1986.Google Scholar
11.Collins, MD, Farrow, JAE, Katic, V, Kandler, O. Taxonomic studies on streptococci of serological groups E, P, U and V. Description of Streptococcus porcinus sp. nov. Syst Appl Microbiol 1984; 5: 402–13.CrossRefGoogle Scholar
12.Garvie, El, Bramley, AJ. Streptococcus uberis: an approach to its classification. J Appl Bacteriol 1979; 46: 295304.CrossRefGoogle Scholar
13.Williams, AM,. Collins, MD. Molecular taxonomie studies on S. uberis types I and II. Description of Streptococcus parauberis sp. nov. J Appl Bacteriol 1990; 68: 485–90.CrossRefGoogle Scholar
14.Sweeney, EJ. Observations on the epidemiology of mastitis due to Streptococcus uberis in a laboratory herd during a complete lactation. Res Vet Sci 1964; 16: 483–7.CrossRefGoogle Scholar
15.Roguinsky, M. Reactions de Streptococcus uberis avec les serums G et P. Ann Inst Pasteur 1969; 117: 529–32.Google Scholar
16.Roguinsky, M. Caractères biochemiques et serologiques de Streptococcus uberis. Ann Inst Pasteur 1971; 120: 154–63.Google Scholar
17.Shuman, RD, Nord, N, Brown, RW, Wessman, GE. Biochemical and serological characteristics of Lancefield groups E, P and U streptococci and Streptococcus uberis. Cornell Vet 1971; 62: 540–68.Google Scholar
18.Cullen, GA. Streptococcus uberis: a review. Vet Bull 1969; 39: 155–65.Google Scholar
19.Jones, KF, Norcross, NL. Immunochemical detection of a common antigen among Streptococcus uberis isolates. J Clin Microbiol 1983; 17: 892–7.CrossRefGoogle ScholarPubMed
20.Hill, AWT, Brady, CA. A note on the isolation and propagation of lytic phages from Streptococcus uberis and their potential for strain typing. J Appl Bacteriol 1989; 67: 425–31.CrossRefGoogle ScholarPubMed
21.Swift, HF, Wilson, AT, Lancefield, RC. Typing group A hemolytic streptococci by M precipitin reactions in capillary pipettes. J Exp Med 1943; 78: 127–33.CrossRefGoogle Scholar
22.Rantz, LA, Randall, E. Use of autoclaved extracts of hemolytic streptococci for serological grouping. Stanford Med Bull 1955; 13: 290–1.Google ScholarPubMed
23.Wray, W, Boulikas, T, Wray, VP, Hancock, R. Silver staining of proteins in polyacrylamide gels. Anal Biochem 1981; 118: 197203.CrossRefGoogle ScholarPubMed
24.Burnette, WN. ‘Western-blotting’: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gel to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 1982; 112: 192203.Google Scholar
25.Sambrook, J, Fritsch, EF, Maniatis, T. Molecular cloning – a laboratory manual, 2nd ed.Cold Spring Harbor Laboratory Press, New York 1989. Book 1, chapter 6.Google Scholar
26.Poxton, IR, Aronsson, B, Mollby, R, Nord, CE, Collee, JG. Immunochemical fingerprinting of Clostridium difficile strains isolated from an outbreak of antibiotic associated colitis and diarrhoea. J Med Microbiol 1984; 17: 317–25.CrossRefGoogle ScholarPubMed
27.Burnie, JP, Matthews, RC, Clark, I, Milne, LJ. Immunoblot fingerprinting of Aspergillus fumigatus. J Immunol Methods 1989; 118: 179–86.CrossRefGoogle ScholarPubMed
28.Burnie, JP, Lee, W. A comparison of DNA and immunoblot fingerprinting of the S II biotype of coagulase negative staphylococci. Epidemiol Infect 1988; 101: 203–12.CrossRefGoogle Scholar
29.Lee, W, Burnie, JP. Fingerprinting methicillin-resistant Staphylococcus aureus by immunoblot technique. J Med Microbiol 1988; 25: 261–8.CrossRefGoogle ScholarPubMed
30.Krickler, SJ, Pennington, TH, Petrie, D. Typing of strains of Staphylococcus aureus by western blot analysis of culture supernates. J Med Microbiol 1986; 21: 169–71.CrossRefGoogle Scholar
31.Burnie, JP, Lee, W, Dent, JC, McNulty, CA. Immunoblot fingerprinting of Campylobacter pylori. J Med Microbiol 1988; 27: 153–9.CrossRefGoogle ScholarPubMed
32.Burnie, JP, Matthews, R, Lee, W. Four outbreaks of nosocomial systemic candidiasis. Epidemiol Infect 1987; 99: 201–11.CrossRefGoogle ScholarPubMed
33.Mulligan, ME, Peterson, LR, Kwok, RY, Clabots, CR, Gerding, DN. Immunoblots and plasmid fingerprints compared with serotyping and polyacrylamide gel electrophoresis for typing Clostridium difficile. 1988; 26: 41–6.Google ScholarPubMed
34.Sharp, J, Poxton, JR. An immunochemical method for fingerprinting Clostridium difficile. J Immunol Methods 1985; 83: 241–8.CrossRefGoogle ScholarPubMed
35.Fischetti, VA, Jarymowycz, M, Jones, KF, Scott, JR. Streptococcal M-protein size mutants occur at high frequency within a single strain. J Exp Med 1986; 164: 971–80.CrossRefGoogle ScholarPubMed
36.Hill, AW, Leigh, JA. DNA fingerprinting of Streptococcus uberis: a useful tool for epidemiology of bovine mastitis. Epidemiol Infect 1989; 103: 165–71.CrossRefGoogle ScholarPubMed
37.Viering, TP, Fine, DP. Genetic analysis of Streptococcus pneumoniae serotypes with the use of DNA fingerprinting. J Infect Dis 1989; 160: 7682.CrossRefGoogle ScholarPubMed
38.Cleary, PP, Kaplan, EL, Livdahl, C, Skjold, S. DNA fingerprints of Streptococcus pyogenes are M type specific. J Infect Dis 1988; 158: 1317–23.CrossRefGoogle ScholarPubMed
39.Skjold, SA, Quie, PG, Fries, LA, Barnham, M, Cleary, PP. DNA fingerprinting of Streptococcus zooepidemicus (Lancefield group C) as an aid to epidemiological study. J Infect Dis 1987: 155: 1145–50.CrossRefGoogle Scholar
40.Bialkowska-Hobrzanska, H, Jaskot, D, Hammerberg, O. Evaluation of restriction endonuclease fingerprinting of chromosomal DNA and plasmid profile analysis for characterization of mult-resistant coagulase-negative staphylococci in bacteremic neonates. J Clin Microbiol 1990; 28: 269–75.CrossRefGoogle ScholarPubMed
41.Caufield, PW, Walker, TM. Genetic diversity within Streptococcus mutans evident from chromosomal DNA restriction fragment polymorphisms. J Clin Microbiol 1989; 27: 274–8.CrossRefGoogle ScholarPubMed
42.Schleifer, KH. Kilpper-Baelz R. Molecular and chemotaxonomic approaches to the classification of streptococci, enterococci and lactococci: a review. Syst Appl Microbiol 1987: 10: 119.CrossRefGoogle Scholar